文档介绍:(2011高考备战冲刺指导)
难点16 三角函数式的化简与求值
,特别是要掌握化简和求值的一些常规技巧,以优化我们的解题效果,做到事半功倍.
●难点磁场
(★★★★★)已知<β<α<,cos(α-β)=,sin(α+β)=-,求sin2α的值_________.
●案例探究
[例1]不查表求sin220°+cos280°+cos20°cos80°的值.
命题意图:本题主要考查两角和、二倍角公式及降幂求值的方法,★★★★级题目.
知识依托:熟知三角公式并能灵活应用.
错解分析:公式不熟,计算易出错.
技巧与方法:解法一利用三角公式进行等价变形;解法二转化为函数问题,使解法更简单更精妙,需认真体会.
解法一:sin220°+cos280°+sin220°cos80°
= (1-cos40°)+ (1+cos160°)+ sin20°cos80°
=1-cos40°+cos160°+sin20°cos(60°+20°)
=1-cos40°+ (cos120°cos40°-sin120°sin40°)+sin20°(cos60°cos20°-sin60°sin20°)
=1-cos40°-cos40°-sin40°+sin40°-sin220°
=1-cos40°-(1-cos40°)=
解法二:设x=sin220°+cos280°+sin20°cos80°
y=cos220°+sin280°-cos20°sin80°,则
x+y=1+1-sin60°=,x-y=-cos40°+cos160°+sin100°
=-2sin100°sin60°+sin100°=0
∴x=y=,即x=sin220°+cos280°+sin20°cos80°=.
[例2]设关于x的函数y=2cos2x-2acosx-(2a+1)的最小值为f(a),试确定满足f(a)=
的a值,并对此时的a值求y的最大值.
命题意图:本题主要考查最值问题、三角函数的有界性、★★★★★级题目
知识依托:二次函数在给定区间上的最值问题.
错解分析:考生不易考查三角函数的有界性,对区间的分类易出错.
技巧与方法:利用等价转化把问题化归为二次函数问题,还要用到配方法、数形结合、分类讲座等.
解:由y=2(cosx-)2-及cosx∈[-1,1]得:
f(a)
∵f(a)=,∴1-4a=a=[2,+∞
故--2a-1=,解得:a=-1,此时,
y=2(cosx+)2+,当cosx=1时,即x=2kπ,k∈Z,ymax=5.
[例3]已知函数f(x)=2cosxsin(x+)-sin2x+sinxcosx
(1)求函数f(x)的最小正周期;
(2)求f(x)的最小值及取得最小值时相应的x的值;
(3)若当x∈[,]时,f(x)的反函数为f-1(x),求f--1(1)的值.
命题意图:本题主要考查三角公式、周期、最值、反函数等知识,还考查计算变形能力,综合运用知识的能力,属★★★★★级题目.
知识依托:熟知三角函数公式以及三角函数的性质、反函数等知识.
错解分析:在求f--