1 / 23
文档名称:

2017浙江高考数学试题(卷).doc

格式:doc   大小:441KB   页数:23页
下载后只包含 1 个 DOC 格式的文档,没有任何的图纸或源代码,查看文件列表

如果您已付费下载过本站文档,您可以点这里二次下载

分享

预览

2017浙江高考数学试题(卷).doc

上传人:799474576 2018/10/14 文件大小:441 KB

下载得到文件列表

2017浙江高考数学试题(卷).doc

相关文档

文档介绍

文档介绍:2017年浙江省高考数学试卷

一、选择题(共10小题,每小题4分,满分40分)
1.(4分)已知集合P={x|﹣1<x<1},Q={x|0<x<2},那么P∪Q=( )
A.(﹣1,2) B.(0,1) C.(﹣1,0) D.(1,2)
2.(4分)椭圆+=1的离心率是( )
A. B. C. D.
3.(4分)某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm3)是( )
A.+1 B.+3 C.+1 D.+3
4.(4分)若x、y满足约束条件,则z=x+2y的取值范围是( )
A.[0,6] B.[0,4] C.[6,+∞) D.[4,+∞)
5.(4分)若函数f(x)=x2+ax+b在区间[0,1]上的最大值是M,最小值是m,则M﹣m( )
,且与b有关 ,但与b无关
,且与b无关 ,但与b有关
6.(4分)已知等差数列{an}的公差为d,前n项和为Sn,则“d>0”是“S4+S6>2S5”的( )


7.(4分)函数y=f(x)的导函数y=f′(x)的图象如图所示,则函数y=f(x)的图象可能是( )
A. B. C. D.
8.(4分)已知随机变量ξi满足P(ξi=1)=pi,P(ξi=0)=1﹣pi,i=1,<p1<p2<,则( )
(ξ1)<E(ξ2),D(ξ1)<D(ξ2) (ξ1)<E(ξ2),D(ξ1)>D(ξ2)
(ξ1)>E(ξ2),D(ξ1)<D(ξ2) (ξ1)>E(ξ2),D(ξ1)>D(ξ2)
9.(4分)如图,已知正四面体D﹣ABC(所有棱长均相等的三棱锥),P、Q、R分别为AB、BC、CA上的点,AP=PB,==2,分别记二面角D﹣PR﹣Q,D﹣PQ﹣R,D﹣QR﹣P的平面角为α、β、γ,则( )
<α<β <γ<β <β<γ <γ<α
10.(4分)如图,已知平面四边形ABCD,AB⊥BC,AB=BC=AD=2,CD=3,AC与BD交于点O,记I1=•,I2=•,I3=•,则( )
<I2<I3 <I3<I2 <I1<I2 <I1<I3

二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分
11.(4分)我国古代数学家刘徽创立的“割圆术”可以估算圆周率π,理论上能把π的值计算到任意精度,祖冲之继承并发展了“割圆术”,将π的值精确到小数点后七位,其结果领先世界一千多年,“割圆术”的第一步是计算单位圆内接正六边形的面积S6,S6= .
12.(6分)已知a、b∈R,(a+bi)2=3+4i(i是虚数单位),则a2+b2= ,ab= .
13.(6分)已知多项式(x+1)3(x+2)2=x5+a1x4+a2x3+a3x2+a4x+a5,则a4= ,a5= .
14.(6分)已知△ABC,AB=AC=4,BC=2,点D为AB延长线上一点,BD=2,连结CD,则△BDC的面积是,cos∠BDC= .
15.(6分)已知向量、满足||=1,||=2,则|+|+|﹣|的最小值是,最大值是.
16.(4分)从6男2女共8名学生中选出队长1人,副队长1人,普通队员2人组成4人服务队,要求服务队中至少有1名女生,共有种不同的选法.(用数字作答)
17.(4分)已知a∈R,函数f(x)=|x+﹣a|+a在区间[1,4]上的最大值是5,则a的取值范围是.

三、解答题(共5小题,满分74分)
18.(14分)已知函数f(x)=sin2x﹣cos2x﹣2sinx cosx(x∈R).
(Ⅰ)求f()的值.
(Ⅱ)求f(x)的最小正周期及单调递增区间.
19.(15分)如图,已知四棱锥P﹣ABCD,△PAD是以AD为斜边的等腰直角三角形,BC∥AD,CD⊥AD,PC=AD=2DC=2CB,E为PD的中点.
(Ⅰ)证明:CE∥平面PAB;
(Ⅱ)求直线CE与平面PBC所成角的正弦值.
20.(15分)已知函数f(x)=(x﹣)e﹣x(x≥).
(1)求f(x)的导函数;
(2)求f(x)在区间[,+∞)上的取值范围.
21.(15分)如图,已知抛物线x2=y,点A(﹣,),B(,),抛物线上的点P(x,y)(﹣<x<),过点B作直线AP的垂线,垂足为Q.
(Ⅰ)求直线AP斜率的取值范围;
(Ⅱ)求|PA|•|PQ|的最大值.
22.(15分)已知数列{xn}满足:x1=1,xn=xn+1+ln(1+xn+1)(n∈N*),证明:当n∈N*时,
(Ⅰ)0<xn+1<