文档介绍:★知识网络★
椭圆
双曲线
抛物线
定义
定义
定义
标准方程
标准方程
几何性质
几何性质
应用
应用
标准方程
几何性质
应用
圆锥曲线
直线与圆锥曲线
位置关系
相交
相切
相离
圆锥曲线的弦
第1讲椭圆
★知识梳理★
1. 椭圆定义:
(1)第一定义:平面内与两个定点的距离之和为常数的动点的轨迹叫椭圆,其中两个定点叫椭圆的焦点.
当时, 的轨迹为椭圆; ;
当时, 的轨迹不存在;
当时, 的轨迹为以为端点的线段
(2)椭圆的第二定义:平面内到定点与定直线(定点不在定直线上)的距离之比是常数()的点的轨迹为椭圆
(利用第二定义,可以实现椭圆上的动点到焦点的距离与到相应准线的距离相互转化).
:
标准方程
性
参数关系
质
焦点
焦距
范围
顶点
对称性
关于x轴、y轴和原点对称
离心率
准线
:
当时,点在椭圆外; 当时,点在椭圆内; 当时,点在椭圆上;
直线与椭圆相交;直线与椭圆相切;直线与椭圆相离
★重难点突破★
重点:掌握椭圆的定义标准方程,会用定义法和待定系数法、坐标转移法、求椭圆的标准方程,能通过方程研究椭圆的几何性质及其应用
难点:椭圆的几何元素与参数的转换
重难点:运用数形结合,围绕“焦点三角形”,用代数方法研究椭圆的性质,把握几何元素转换成参数的关系
问题1已知为椭圆的两个焦点,过的直线交椭圆于A、B两点若,则=______________。
[解析]的周长为,=8
问题2椭圆的离心率为,则
[解析]当焦点在轴上时,;
当焦点在轴上时,,
综上或3
★热点考点题型探析★
考点1 椭圆定义及标准方程
题型1:椭圆定义的运用
[例1 ] (湖北部分重点中学2009届高三联考)椭圆有这样的光学性质:从椭圆的一个焦点出发的光线,经椭圆反射后,反射光线经过椭圆的另一个焦点,今有一个水平放置的椭圆形台球盘,点A、B是它的焦点,长轴长为2a,焦距为2c,静放在点A的小球(小球的半径不计),从点A沿直线出发,经椭圆壁反弹后第一次回到点A时,小球经过的路程是
O
x
y
D
P
A
B
C
Q
(a-c) (a+c)
[解析]按小球的运行路径分三种情况:
(1),此时小球经过的路程为2(a-c);
(2), 此时小球经过的路程为2(a+c);
(3)此时小球经过的路程为4a,故选D
【名师指引】考虑小球的运行路径要全面
题型2 求椭圆的标准方程
[例2 ]设椭圆的中心在原点,坐标轴为对称轴,一个焦点与短轴两端点的连线互相垂直,且此焦点与长轴上较近的端点距离为-4,求此椭圆方程.
【解题思路】将题中所给条件用关于参数的式子“描述”出来
[解析]设椭圆的方程为或,
则,
解之得:,b=c=.
【名师指引】准确把握图形特征,正确转化出参数的数量关系.
[警示]易漏焦点在y轴上的情况.
考点2 椭圆的几何性质
题型1:求椭圆的离心率(或范围)
[例3 ] 在中,.若以为焦点的