文档介绍:充要条件与必要条件的教学设计
1  教材分析
充要条件是中学数学中最重要的数学概念之一,它主要讨论了命题的条件与结论之间的逻辑关系,目的是为今后的数学学习特别是数学推理的学习打下基础。在旧教材中,这节内容安排在《解析几何》第二章“圆锥曲线”的第三节讲授,而在新教材中,这节内容被安排在数学第一册(上)第一章中“简易逻辑”的第三节。除了教学位置的前移之外,新教材中与充要条件相关联的知识体系也作了相应的扩充。在“充要条件”这节内容前,还安排了“逻辑联结词”和“四种命题”这二节内容作为必要的知识铺垫,特别是“逻辑联结词”这部分内容是第一次进入中学数学教材,安排在充要条件之前讲授,既可以使学生丰富并深化对命题的理解,也便于老师讲透充要条件这一基本数学概念。
从学生学习的角度看,与旧教材相比,教学时间的前置,造成学生在学习充要条件这一概念时的知识储备不够丰富,逻辑思维能力的训练不够充分,,新教材在第一章的小结与复习中,把学生的学习要求规定为“初步掌握充要条件”(注意:新教学大纲的教学目标是“掌握充要条件的意义”),,教师在充要条件这一内容的新授教学时,不可拔高要求追求一步到位,而要在今后的教学中滚动式逐步深化,使之与学生的知识结构同步发展完善.
2  教学设计
一、教学目标:
知识目标:
(1)理解充分、必要条件的概念;
(2)初步掌握充分、必要条件的判断方法。
能力目标:培养学生的阅读理解能力、逻辑推理能力和归纳总结的能力。
情感目标:让学生感受“在生活中数学地思维”,增加对学习逻辑知识的兴趣和信心,克服畏惧感,激发求知欲。
二、教学重点: 充要条件的概念和判断方法。
三、教学难点: 理解充要条件的概念。
四、教学方法: 讲练结合教学法
五、教学过程:
1、复习旧知,引入新课
首先,在导入阶段的教学中,回顾上节研究的命题的一般形式“若p则q”和其真假判断的方法,先向学生介绍真假命题的简记符号。同时以命题“若x>0,则x2>0。”和其逆命题“若x2>0,则x>0。”为例让学生学习符号的使用。
在此基础上,让学生先分析下面的问题:
判断下列命题的真假,并研究其逆命题的真假(用p与q的相互推出符号表示你的判断)。
p q
(1)若x>2, 则x>1。
(2)若两三角形面积相等,则这两个三角形全等。
(3)若三角形有两角相等,则它是等腰三角形
(4)若a2>b2, 则a>b。
教师在学生回答的基础上,结合(1)、(2)两个命题,分析引出对“充分的”和“必要的”这两个词汇的感性认识:
首先,在原命题中研究前者对后者的制约程度:
比如(1)中,p能推出q,表明要得到结论q,有了条件p就足够了,也就是说条件p对于结论q是“充分的”。在(2)中,p不能推出q,表明条件p对于结论q是“不充分的”。
其次,在逆命题中研究后者对前者的依赖程度:
比如(2)中,p不能推出q,但p能被q推出,这说明p对于q又是一种什么样的联系呢?作出分析:
命题(2)中,两三角形面积相等不能说明两三角形必然全等,但是,如果两三角形的面积不相等,则两三角形会全等吗?不会。为什么?因为如果两三角形全等,则两三角形的面积是必然相等的。这也就是说,两三角形面积相等是两三角