1 / 31
文档名称:

直角三角形.doc

格式:doc   大小:246KB   页数:31页
下载后只包含 1 个 DOC 格式的文档,没有任何的图纸或源代码,查看文件列表

如果您已付费下载过本站文档,您可以点这里二次下载

分享

预览

直角三角形.doc

上传人:tmm958758 2018/12/3 文件大小:246 KB

下载得到文件列表

直角三角形.doc

相关文档

文档介绍

文档介绍:教学目标:
1、要求学生掌握直角三角形的性质定理(勾股定理)和判定定理,并能应用定理解决与直角三角形有关的问题。
2、了解逆命题、互逆命题及逆定理、互逆定理的含义,能结合自己的生活及学习体验举出逆命题、互逆命题及逆定理、互逆定理的例子。
3、进一步掌握推理证明的方法,拓发展演绎推理能力,培养思维能力。
4、掌握直角三角形全等的判定定理,并能应用定理解决与直角三角形有关的问题。
教学重点:直角三角形的性质和判定定理;直角三角形HL全等判定定理。
教学难点:勾股定理逆定理的证明方法;直角三角形HL全等判定定理。
教学过程:
(一)
1、温故知新
你记得勾股定理的内容吗?你曾经用什么方法得到了勾股定理?
(由学生回顾得出勾股定理的内容。)
定理:直角三角形两条直角边的平方和等于斜边的平方。
2、学一学
问题情境:在一个三角形中,当两边的平方和等于第三边的平方时,我们曾用度量的方法得出“这个三角形是直角三角形”的结论,你能证明这个结论吗?
已知:在ΔABC中,AB2+AC2 = BC2
求证:ΔABC是直角三角形
(1)          (2)
 
(讲解证明思路及证明过程,引导学生领会证明思路及证明过程,得出结论。)
结论:如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形。
3、议一议:
①把准备好的卡片随机地发给学生,学生按卡片的种类被分成A、B两组,要求拿A类卡片的学生a说出自己卡片上的内容,然后寻找拿B类卡片的与自己的命题相反的同学b。b要自己主动站起来,并说出自己卡片上的命题是什么,由学生a来判断他(她)和自己是否在一组。(注意:A、B类卡片上的内容要出现适量的不能构成互逆命题、互逆定理的例子,但不能太多。这样既有利于学生分析、辨别互逆命题、互逆定理,又有利于他们从正例中归纳、总结出互逆命题、互逆定理的内涵)。
②对学生的表现予以表扬、肯定和鼓励。然后提问拿B卡片的找到组的学生:你是如何判断和谁在一组的?
③提取学生回答中的合理性成分,总结归纳,然后提问拿A类卡片的学生:你是如何判断b是否和你在同一组?
④肯定学生的认识,提问拿B类卡片的但没找到组的学生:为什么他们的命题和A类同学的命题不能互相构成反面
⑤肯定所有学生的发言和参与,然后让学生试着自己归纳总结概括出什么是互逆命题、互逆定理。
⑥肯定学生的回答,并在此基础上进一步升华,给出严谨的表述。
⑦结合刚刚讲过的勾股定理及其逆定理,应用互逆命题、互逆定理的含义进行分析,加深学生对这一方面的认识。
⑧结合游戏中的命题向学生说明:一个命题是真命题,它的逆命题不一定是真命题。让学生体会命题变换的辩证关系。
⑨让学生回忆自己曾学到的互逆命题和互逆定理,说出教师难备的一些命题的逆命题并判断真假。
4、关于互逆命题和互逆定理。
  (1)在两个命题中,如果一个命题的条件和结论分别是另一个命题的结论和条件,那么这两个命题称为互逆命题,其中一个命题称为另一个命题的逆命题。
  (2)一个命题是真命题,它的逆命题却不一定是真命题。如果一个定理的逆命题经过证明是真命题,那么它也是一个定理,这两个定理称为互逆定理,其中一个定理称为另一个定理的逆定理。
(引导学生理解掌握互逆命题的定义。)
(二)
提问
1、判断两个三角形全等的方法有哪几种?
2、有两边及其中一边的对角对应相等的两个三角形全等吗?如果其中一个角是直角呢?请证明你的结论。
探究
启发学生进一步思考,对于直角三角形这样的一类特殊三角形,全等三角形判定四个定理是否可以简化一些?还有没有其他的判定方法?
思考刚才给出的条件是否可以减少,回答:对于SSS,根据勾股定理,只要有两条直角边或一条直角边和一条斜边对应相等就可以了……类似地考虑其他情况。
在这时适时地提出曾经被抛弃的一条假名题:两边及其中一边的对角对应相等的两个三角形全等在现在成立吗?
结合直角三角形的特点,想到:如果这个角是直角,那么命题就是真命题。
让学生自己写出条件并给出证明。让先写完的学生到黑板上板演。
讲解学生的板演,借此进一步规范学生的书写和表达。分析命题的条件,既然其中一边和它所对的直角对应相等,那么可以把这两个因素总结为直角三角形的斜边对应相等,于是直角三角形有自己的全等判定定理:斜边和一条直角边对应相等的直角三角形全等,可以简单地用“斜边、直角边”或“HL”表示。
5、练习:
写出命题“如果有两个有理数相等,那么它们的平方相等”的逆命题,并判断是否是真命题。
试着举出一些其它的例子。
随堂练习 1
判断命题的真假,并说明理由:
锐角对应相