1 / 12
文档名称:

基础知识.doc

格式:doc   大小:261KB   页数:12页
下载后只包含 1 个 DOC 格式的文档,没有任何的图纸或源代码,查看文件列表

如果您已付费下载过本站文档,您可以点这里二次下载

分享

预览

基础知识.doc

上传人:drp539603 2019/1/6 文件大小:261 KB

下载得到文件列表

基础知识.doc

相关文档

文档介绍

文档介绍:宇阳科技发展有限公司向勇
一、电容器基础
电容器基本模型是一种中间被电介质材料隔开的双层导体电极所构成的单片器件,如图1所示。这种介质必须是纯绝缘材料,它的特性在很大程度上决定了器件的电性能。
介质特性取决于电介质材料对电荷的储存能力(介电常数)和对外电场的本征响应,也就是电容量,损耗特性、绝缘电阻、介质抗电强度、老化速率以及上述性能的温度特性。
图1 单层平板电容器

通常,电容器采用的介质材料主要包括:空气(介电常数K几乎与真空相同,定义为1);天然介质:如云母,介电常数(K)为4~8;合成材料:如陶瓷,K值范围由9~1500。
电容器所用陶瓷介质是以钛酸盐为主要成份,可以通过配方调整制成具有极高介电常数和其他适当电特性的介质材料。这是陶瓷电容器,尤其是片式多层陶瓷电容器()技术的基础。制造过程中的所有工艺和其它材料的确定原则都趋向于实现其介电性能的最优化。
二、电容量
电容器的基本特性是能够储存电荷(Q)。储存电荷量Q与电容量(C)和外加电压(V)成正比。
Q=CV
因此,充电电流被定义为:
I=dQ/dt=Q dV/dt
当电容器外加电压为1伏特,充电电流为1安培,充电时间为1秒时,电容量定义为1法拉。
C=Q/V=库仑/伏特=法拉
由于法拉是一个很大的测量单位,在实用中不会遇到,常用的是法拉的分数,即:
微法(μF) = 10-6F
毫微法,又称为:纳法(nF) = 10-9F
微微法,又称为:皮法(pF) = 10-12F
三、影响电容量的因素
施加电压的单片电容器如图1,其电容量正比于器件的几何尺寸和相对介电常数:
C=KA/f t
在这里C=电容量;K=相对介电常数,简称介电常数;A=电极层面积;t=介质厚度;f=换算因子(在基础科学领域:相对介电常数用εr表示。在工程应用中以K表示,简称为介电常数)
在英制度量单位体系中,f=,尺寸A和t用英寸,电容量值用微微法表示。
例如:图1所示器件,×,,介电常数为2500。
2500××()
C = = 10027 pF
×
对于同一电容器,采用公制体系,换算因子f=,尺寸用cm,容值也用微微法(pF)表示,,则:
2500××
C = =10028pF
×
可见,电容量和几何尺寸的关系是很明确的,增大电极面积和减少介质厚度,均可获得较大容量值。然而,无休止地增大单层电容器的面积或减少介质的厚度是不切合实际的。因此,提出了平行阵列式迭层型电容器的新概念,按这种方式可以制造比体积电容很大的单个器件,如图2所示。
在这种“多层”结构中,由于平行地排列了多层电极,使电极有效面积A’得以增大,而在电极间的介质厚度t ’则有可能进一步减薄,因此,电容量C随介质层数N的增大和介质厚度t ’的减小而增大。这里,A ’是两两相对的交错电极重合面积:
图2 结构图

KA’N
C =


用同样的介质材料,××,。××,电极重合面积A ’× 英寸。
2500××
C = =10107 pF
×
这一实例表明多层结构在提供同样大容量的情况下,体积较单层器件缩小700倍。因此,通过优化几何尺寸,选择具有优良电性能的介质材料,设计制造的片式多层电容器即可具有极大的比体积电容。对介质材料的要求是,具有高介电常数,并且在制成薄层结构后仍保持良好的绝缘电阻和介质抗电强度等。
四、电容量的分类
在工业生产中,介质材料是根据电容量温度系数来进行区别和分类的。片式多层陶瓷电容器通常采用两大类别材料生产,即1类陶瓷介质和2类陶瓷介质。第三种(3类瓷)是用于制造单层型圆片电容器的阻档层或晶界层型陶瓷介质(即:半导体陶瓷介质)。
用环境试验箱测量由室温(25℃)变化到一定温度时的容量变化即可确定温度系数。温度系数αC表示为温度每变化1摄氏度,电容量较初始值的变化率,单位以百万分之一(ppm/℃)计。1类瓷介电容器具有线性温度系数,可根据αC规定其特性组别。温度系数αC的计算方法如下:
C2-C1
αC(ppm/℃) = ×106
C1(T2-T1)
这里C1=T1的电容量,C2=T2的电容量。
2类瓷介电容器的容量随环境温度呈非线性关系变化,无法用线性化的温度系数来表征。其温