文档介绍:椭圆标准方程典型例题
例1 已知椭圆的一个焦点为(0,2)求的值.
分析:把椭圆的方程化为标准方程,由,根据关系可求出的值.
解:,所以,解得.
又,所以,.
例2 已知椭圆的中心在原点,且经过点,,求椭圆的标准方程.
分析:因椭圆的中心在原点,,运用待定系数法,
求出参数和(或和)的值,即可求得椭圆的标准方程.
解:当焦点在轴上时,设其方程为.
由椭圆过点,,代入得,,故椭圆的方程为.
当焦点在轴上时,设其方程为.
由椭圆过点,,联立解得,,故椭圆的方程为.
例3 的底边,和两边上中线长之和为30,求此三角形重心的轨迹和顶点的轨迹.
分析:(1)由已知可得,再利用椭圆定义求解.
(2)由的轨迹方程、坐标的关系,利用代入法求的轨迹方程.
解: (1)以所在的直线为轴,,由,知点的轨迹是以、为焦点的椭圆,,,有,
故其方程为.
(2)设,,则. ①
由题意有代入①,得的轨迹方程为,其轨迹是椭圆(除去轴上两点).
例4 已知点在以坐标轴为对称轴的椭圆上,点到两焦点的距离分别为和,过点作焦点所在轴的垂线,它恰好过椭圆的一个焦点,求椭圆方程.
解:设两焦点为、,且,..
从知垂直焦点所在的对称轴,所以在中,,
可求出,,从而.
∴所求椭圆方程为或.
例5 已知椭圆方程,长轴端点为,,焦点为,,是椭圆上一点,,.求:的面积(用、、表示).
分析:求面积要结合余弦定理及定义求角的两邻边,从而利用求面积.
解:如图,设,由椭圆的对称性,不妨设在第一象限.
由余弦定理知: ·.①
由椭圆定义知: ②,则得.
故.
例6 已知动圆过定点,且在定圆的内部与其相内切,求动圆圆心的轨迹方程.
分析:关键是根据题意,列出点P满足的关系式.
解:如图所示,,
即定点和定圆圆心距离之和恰好等于定圆半径,
即.∴点的轨迹是以,为两焦点,
半长轴为4,半短轴长为的椭圆的方程:.
说明:本题是先根据椭圆的定义,判定轨迹是椭圆,然后根据椭圆的标准方程,.
例7 已知椭圆,
(1)求过点且被平分的弦所在直线的方程;
(2)求斜率为2的平行弦的中点轨迹方程;
(3)过引椭圆的割线,求截得的弦的中点的轨迹方程;
(4)椭圆上有两点、,为原点,且有直线、斜率满足,
求线段中点的轨迹方程.
分析:此题中四问都跟弦中点有关,因此可考虑设弦端坐标的方法.
解:设弦两端点分别为,,线段的中点,则
①-②得.
由题意知,则上式两端同除以,有,
将③④代入得.⑤
(1)将,代入⑤,得,故所求直线方程为: . ⑥
将⑥代入椭圆方程得,符合题意,为所求.
(2)将代入⑤得所求轨迹方程为: .(椭圆内部分)
(3)将代入⑤得所求轨迹方程为: .(椭圆内部分)
(4)由①+②得: , ⑦, 将③④平方并整理得
, ⑧, , ⑨
将⑧⑨代入⑦得: , ⑩
再将代入⑩式得: , 即.
,此题除了设弦端坐标的方法,还可用其它方法解决.
例8 已知椭圆及直线.