1 / 6
文档名称:

金属丝杨氏模量和测定.doc

格式:doc   大小:199KB   页数:6页
下载后只包含 1 个 DOC 格式的文档,没有任何的图纸或源代码,查看文件列表

如果您已付费下载过本站文档,您可以点这里二次下载

分享

预览

金属丝杨氏模量和测定.doc

上传人:1006108867 2019/1/9 文件大小:199 KB

下载得到文件列表

金属丝杨氏模量和测定.doc

相关文档

文档介绍

文档介绍:物理实验报告
【实验名称】
杨氏模量的测定
【实验目的】
1. 掌握用光杠杆测量微小长度变化的原理和方法,了解其应用。
2. 掌握各种长度测量工具的选择和使用。
3. 学习用逐差法和作图法处理实验数据。
【实验仪器】
MYC-1型金属丝杨氏模量测定仪(一套)、钢卷尺、米尺、螺旋测微计、重垂、砝码等。
【实验原理】
一、杨氏弹性模量
设金属丝的原长L,横截面积为S,沿长度方向施力F后,其长度改变ΔL,则金属丝单位面积上受到的垂直作用力F/S称为正应力,金属丝的相对伸长量ΔL/L称为线应变。实验结果指出,在弹性范围内,由胡克定律可知物体的正应力与线应变成正比,即
(1)

E (2)
比例系数E即为杨氏弹性模量。在它表征材料本身的性质,越大的材料,要使它发生一定的相对形变所需要的单位横截面积上的作用力也越大。的为(1=1;1=)。
本实验测量的是钢丝的杨氏弹性模量,如果钢丝直径为,则可得钢丝横截面积
则(2)式可变为
E (3)
可见,只要测出式(3)中右边各量,就可计算出杨氏弹性模量。式中(金属丝原长)可由米尺测量,(钢丝直径),可用螺旋测微仪测量,F(外力)可由实验中钢丝下面悬挂的砝码的重力F=求出,而ΔL是一个微小长度变化(在此实验中,当L≈1m时,)。因此,本实验利用光杠杆的光学放大作用实现对钢丝微小伸长量ΔL的间接测量。 
二、光杠杆测微小长度变化
尺读望远镜和光杠杆组成如图2所示的测量系统。光杠杆系统是由光杠杆镜架与尺读望远镜组成的。光杠杆结构见图2(b)所示,它实际上是附有三个尖足的平面镜。三个尖足的边线为一等腰三角形。前两足刀口与平面镜在同一平面内(平面镜俯仰方位可调),后足在前两足刀口的中垂线上。尺读望远镜由一把竖立的毫米刻度尺和在尺旁的一个望远镜组成。
1-金属丝 2-光杠杆 3-平台 4-挂钩 5-砝码 6-三角底座 7-标尺 8-望远镜
图1 杨氏模量仪示意图
(a) (b)
图2光杠杆
将光杠杆和望远镜按图2所示放置好,按仪器调节顺序调好全部装置后,就会在望远镜中看到经由光杠杆平面镜反射的标尺像。设开始时,光杠杆的平面镜竖直,即镜面法线在水平位置,在望远镜中恰能看到望远镜处标尺刻度的象。当挂上重物使细钢丝受力伸长后,光杠杆的后脚尖随之绕后脚尖下降ΔL,光杠杆平面镜转过一较小角度,法线也转过同一角度。根据反射定律,从处发出的光经过平面镜反射到(为标尺某一刻度)。由光路可逆性,从发出的光经平面镜反射后将进入望远镜中被观察到。望远记-= Δn.
由图2可知
式中,为光杠杆常数(光杠杆后脚尖至前脚尖连线的垂直距离);
为光杠杆镜面至尺读望远镜标尺的距离
由于偏转角度θ很小,即ΔL<<b,Δn <<,所以近似地有
,

(4)
由上式可知,微小变化量ΔL可通过较易准确测量的b、D、Δn,间接求得。
实验中取D>>b,光杠杆的作用是将微小长度变化ΔL放大为标尺上的相应位置变化Δn,ΔL被放大了倍。
(注:实际实验中有两面镜子,故ΔL被放大了4D/b倍)
将(3)、(4)两式代入(2)有
E×2 (5)
通过上式便可算出杨氏模量E。 
【实验内容及步骤】
一、杨氏模量测定仪的调整