文档介绍:1内容一、启发式方法概述二、蚁群优化算法2背景传统实际问题的特点连续性问题——主要以微积分为基础,且问题规模较小传统的优化方法追求准确——精确解理论的完美——结果漂亮主要方法:线性与非线性规划、动态规划、多目标规划、整数规划等;排队论、库存论、对策论、决策论等。传统的评价方法算法收敛性(从极限角度考虑)收敛速度(线性、超线性、二次收敛等)3传统运筹学面临新挑战现代问题的特点离散性问题——主要以组合优化(针对离散问题,定义见后)理论为基础不确定性问题——随机性数学模型半结构或非结构化的问题——计算机模拟、决策支持系统大规模问题——并行计算、大型分解理论、近似理论现代优化方法追求满意——近似解实用性强——解决实际问题现代优化算法的评价方法算法复杂性4现代优化(启发式)方法种类禁忌搜索(tabusearch)模拟退火(simulatedannealing)遗传算法(icalgorithms)神经网络(works)蚁群算法(群体(群集)智能,SwarmIntelligence)拉格朗日松弛算法(lagrangeanrelaxation)):解决离散问题的优化问题——运筹学分支。通过数学方法的研究去寻找离散事件的最优编排、分组、次序或筛选等,可以涉及信息技术、经济管理、工业工程、交通运输和通信网络等许多方面。数学模型::-1背包问题(0-1knapsackproblem)/8例2旅行商问题(TSP,travelingsalesmanproblem)管梅谷教授1960年首先提出,国际上称之为中国邮递员问题。问题描述:一商人去n个城市销货,所有城市走一遍再回到起点,使所走路程最短。