1 / 24
文档名称:

(废水生物脱氮)AO脱氮课件.doc

格式:doc   页数:24页
下载后只包含 1 个 DOC 格式的文档,没有任何的图纸或源代码,查看文件列表

如果您已付费下载过本站文档,您可以点这里二次下载

分享

预览

(废水生物脱氮)AO脱氮课件.doc

上传人:1006108867 2013/10/22 文件大小:0 KB

下载得到文件列表

(废水生物脱氮)AO脱氮课件.doc

文档介绍

文档介绍:A/O——缺氧——好氧活性污泥法
(1)基本原理   A/O是Anoxic/Oxic的缩写,它的优越性是除了使有机污染物得到降解之外,还具有一定的脱氮除磷功能,是将厌氧水解技术用为活性污泥的前处理,所以A/O法是改进的活性污泥法。
A/O工艺将前段缺氧段和后段好氧段串联在一起,,O段DO=2~4mg/L。在缺氧段异养菌将污水中的淀粉、纤维、碳水化合物等悬浮污染物和可溶性有机物水解为有机酸,使大分子有机物分解为小分子有机物,不溶性的有机物转化成可溶性有机物,当这些经缺氧水解的产物进入好氧池进行好氧处理时,提高污水的可生化性,提高氧的效率;在缺氧段异养菌将蛋白质、脂肪等污染物进行氨化(有机链上的N或氨基酸中的氨基)游离出氨(NH3、NH4+),在充足供氧条件下,自养菌的硝化作用将NH3-N(NH4+)氧化为HO3-,通过回流控制返回至A池,在缺氧条件下,异氧菌的反硝化作用将NO3-还原为分子态氮(N2)完成C、N、O在生态中的循环,实现污水无害化处理。
(2)工艺流程
 
 
A/O工艺流程
活性污泥几种主要运行方式工艺参数比较
单位:Ls─污泥负荷 KgBOD5/KgMLSS·d
Lv─容积负荷 KgBOD5/m3(有效容积)·d
MLSS─混合液浓度mg/L
R─污泥回流比%
HI─供气量m3(空气)/m3污水
ts─污泥龄d
说明:
①上表是根据回流污泥浓度4~8g/L确定的,回流污泥浓度改变时,相关数据也应相对改变。
②当所要求的处理效率降低时,Ls值可以增大。
③当进水BOD5小于一般城市污水的BOD5时,Ls应相应减少
④污水在曝气池内实际水力停留时间 t’=V/(1+R)Q? (h)
⑤曝气时间 t=曝气池有效容积V(m3)/污水设计流量Q(m3/h)=污水在曝气池内名义水力停留时间
(3)主要工艺特点
缺氧池在前,污水中的有机碳被反硝化菌所利用,可减轻其后好氧池的有机负荷,反硝化反应产生的减度可以补偿好氧池中进行硝化反应对碱度的需求。
好氧在缺氧池之后,可以使反硝化残留的有机污染物得到进一步去除,提高出水水质。
BOD5的去除率较高可达90~95%以上,但脱氮除磷效果稍差,脱氮效率70~80%,除磷只有20~30%。尽管如此,由于A/O工艺比较简单,也有其突出的特点,目前仍是比较普遍采用的工艺。该工艺还可以将缺氧池与好氧池合建,中间隔以档板,降低工程造价,所以这种形式有利于对现有推流式曝气池的改造。
(4)A/O工艺的影响因素
A/O工艺运行过程控制不要产生污泥膨胀和流失,其对有机物的降解率是较高的(90~95%),缺点是脱氮除磷效果较差。如果原污水含磷浓度<3mg/L,则选用A/O工艺是合适的,为了提高脱氮效果,A/O工艺主要控制几个因素:
①MLSS一般应在3000mg/L以上,低于此值A/O系统脱氮效果明显降低。
②TKN/MLSS负荷率(TKN─凯式氮,指水中氨氮与有机氮之和):/(gMLSS·d)之下。
③BOD5/MLSS负荷率:在硝化反应中,影响硝化的主要因素是硝化菌的存在和活性,;。前者比后者的比增殖速度小得多。要使硝化菌存活并占优势,;但对于异养型好氧菌,。在传统活性污泥法中,由于污泥龄只有2~4d,所以硝化菌不能存活并占有优势,不能完成硝化任务。
要使硝化菌良好繁殖就要增大MLSS浓度或增大曝气池容积,以降低有机负荷,从而增大污泥龄。其污泥负荷率(BOD5/MLSS)·d
④污泥龄 ts:为了使硝化池内保持足够数量的硝化菌以保证硝化的顺利进行,确定的污泥龄应为硝化菌世代时间的3倍,(20℃)
硝化菌世代时间与污水温度的关系
 
若冬季水温为10℃,硝化菌世代时间为10d,则设计污泥龄应为30d
⑤污水进水总氮浓度:TN应小于30mg/L,NH3-N浓度过高会抑制硝化菌的生长,使脱氮率下降至50%以下。
⑥混合液回流比:R的大小直接影响反硝化脱氮效果,R增大,脱氮率提高,但R增大增加电能消耗增加运行费。
A/O工艺脱氮率与混合液回流比关系
⑦缺氧池BOD5/NOx--N比值:H>4以保证足够的碳/氮比,否则反硝化速率迅速下降;但当进入硝化池BOD5值又应控制在80mg/L以下,当BOD5浓度过高,异养菌迅速繁殖,抑制自养菌生长使硝化反应停滞。
⑧硝化池溶解氧:DO>2mg/L,一般充足供氧DO应保持2~4mg/L,满足硝化需氧量要