文档介绍:小学数学典型应用题
22 商品利润问题
【含义】这是一种在生产经营中经常遇到的问题,包括成本、利润、利润率和亏损、亏损率等方面的问题。
【数量关系】利润=售价-进货价
           利润率=(售价-进货价)÷进货价×100%
             售价=进货价×(1+利润率)
             亏损=进货价-售价
           亏损率=(进货价-售价)÷进货价×100%
【解题思路和方法】简单的题目可以直接利用公式,复杂的题目变通后利用公式。
例1 某商品的平均价格在一月份上调了10%,到二月份又下调了10%,这种商品从原价到二月份的价格变动情况如何?
解:设这种商品的原价为1,则一月份售价为(1+10%),二月份的售价为(1+10%)×(1-10%),所以二月份售价比原价下降了
1-(1+10%)×(1-10%)=1%
答:二月份比原价下降了1%。
例2 某服装店因搬迁,店内商品八折销售。苗苗买了一件衣服用去52元,已知衣服原来按期望盈利30%定价,那么该店是亏本还是盈利?亏(盈)率是多少?
解要知亏还是盈,得知实际售价52元比成本少多少或多多少元,进而需知成本。因为52元是原价的80%,所以原价为(52÷80%)元;又因为原价是按期望盈利30%定的,
所以成本为 52÷80%÷(1+30%)=50(元)
可以看出该店是盈利的,盈利率为(52-50)÷50=4%
答:该店是盈利的,盈利率是4%。
例3 ,按期望获得40%的利润定价出售,当销售出80%后,剩下的作业本打折扣,结果获得的利润是预定的86%。问剩下的作业本出售时按定价打了多少折扣?
解:问题是要计算剩下的作业本每册实际售价是原定价的百分之几。从题意可知,×(1+40%),所以关键是求出剩下的每册的实际售价,为此要知道剩下的每册盈利多少元。剩下的作业本售出后的盈利额等于实际总盈利与先售出的80%的盈利额之差,即
×1200×40%×86%-×1200×40%×80%
=(元)
剩下的作业本每册盈利 ÷[1200×(1-80%)]
=(元)
又可知(+)÷[×(1+40%)]=80%
答:剩下的作业本是按原定价的八折出售的。
23 存款利率问题
【含义】把钱存入银行是有一定利息的,利息的多少,与本金、利率、存期这三个因素有关。利率一般有年利率和月利率两种。年利率是指存期一年本金所生利息占本金的百分数;月利率是指存期一月所生利息占本金的百分数。
【数量关系】
年(月)利率=利息÷本金÷存款年(月)数×100%
  
利息=本金×存款年(月)数×年(月)利率
  
本利和=本金+利息
            
=本金×[1+年(月)利率×存款年(月)数]
【解题思路和方法】简单的题目可直接利用公式,复杂的题目变通后再利用公式。
例1 李大强存入银行1200元,%,到期后连本带利共取出1488元,求存款期多长。
解因为存款期内的总利息是(1488-1200)元,
所以总利率为(1488-1200)÷1200
又因为已知月利率,
所以存款月数为(1488-1200)÷1200÷%=30(月)
答:李大强的存款期是30月即两年半。
例2 银行定期整存整取的年利率是:%,%,五年期9%。如果甲乙二人同时各存入1万元,甲先存二年期,到期后连本带利改存三年期;乙直存五年期。五年后二人同时取出,那么,谁的收益多?多多少元?
解:甲的总利息[10000×%×2+[10000×(1+%×2)]×%×3
           =1584+11584×%×3=(元)
乙的总利息 10000×9%×5=4500(元)
           4500-=(元)
答:乙的收益较多,。
24 溶液浓度问题
【含义】在生产和生活中,我们经常会遇到溶液浓度问题。这类问题研究的主要是溶剂(水或其它液体)、溶质、溶液、浓度这几个量的关系。例如,水是一种溶剂,被溶解的东西叫溶质,溶解后的混合物叫溶液。溶质的量在溶液的量中所占的百分数叫浓度,也叫百分比浓度。
【数量关系】溶液=溶剂+溶质
浓度=溶质÷溶液×100%
【解题思路和方法】简单的题目可直接利用公式,复杂的题目变通后再利用公式。
例1 爷爷有16%的糖水50克,(1)要把它稀释成10%的糖水,需加水多少克?(2)若要把它变成30%的糖水,需加糖多少克?
解(1)需要加水多少克? 50×16%÷10%-50=30(克)
   (2)需要加糖多少克?