文档介绍:雷达高分辨距离像可以反映目标散射点在纵向距离上的分布情况,摘要,提供了目标重要的结构信息,并且相对于基于雷达目标像⊿及像的目标识别技术,基于的目标识别不要求目标相对于雷达平台有一定的转角,因而更易获取,对雷达具有更大的适应性,因此基于的雷达目标识别技术将受到更为广泛的关注和研究。近十几年来,基于核函数的方法也已经成功地用于解决机器学习领域的各种问题。基于核函数的算法相当于线性算法的一种非线性版本,它通过一个非线性函数将输入向量预先投影到一个高维空间中,我们只需要利用核函数计算各向量的内积便可在该高维空间中应用模式分析的各种算法,不仅提高了算法性能也节约了大量的运算时间。而在识别当中,由于目标的机动性,目标之间存在着复杂的非线性关系。因此,本论文主要围绕着“十五”国防预研项目“目标识别技术”钅勘嗪牛汀笆晃濉惫涝ぱ邢目“雷达高分辨距离像特征提取及识别”钅勘嗪牛难芯咳挝瘢优化算法等三个方面展开了较为深入的研究,另外,论文也对目标方位角划分和识别领域中的一种线性降维方法,但是它对数据有较强的限制,例如各类数据均构。为了克服这些局限性,近来子类判别分析。同时,我们给出了一个新的硎竟酱佣苊饬嗽谔卣骺占渲械囊⑻岢鲆恢旨虻ザ行У姆椒ㄍü跎僭诰霾吆谐鱿值闹С畔蛄康母鍪但鉴于在决策阶段测试数据必须和所有支撑向量结合构成核函数的原因,与其他方法相比,在获得相似的性能时其测试速度相对较慢。实际上,投影数据只是位针对高分辨距离像目标识别,从基于核函数的特征提取、分类器设计以及核函数距离像的特征选择技术进行了研究。本论文的主要内容概括如下:⒓虻セ毓肆撕朔椒ǖ难芯勘尘埃樯芰撕撕幕靖拍詈托灾省2⑶遥为了展示基于核函数的方法相对线性方法的优越性,我们针对雷达的目标姿态敏感性、平移敏感性和闪烁效应的特点改进了核主分量分析从而将其应用于雷达自动目标识别任务中。⑾咝耘斜鸱治,是被广泛应用于模式为协方差矩阵相同但均值向量不同的多元正态分布,并且每类数据都是单聚类结已经被提出。我们提出一种基于核函数的子空间判别分析,简称为些复杂而且不直观的推导过程。来加速其决策过程。尽管支撑向量机已经成功地应用于数据分类与回归等领域,于高维核空间的一个子空间中,所以我们能够找到一组基向量来表示所有的支撑向量,而这些基向量的个数通常小于支撑向量的个数。,雷达信号处理国家重点实验室
知识水坝***@pologoogle为您整理
⒄攵院撕呕侍饨辛搜芯俊U獠糠止ぷ髦饕7秩瞿谌荩提出一种针对雷达一维高分辨距离像的核函数优化算法。;撕欠裼胧莘植冀峁瓜唷捌ヅ洹可分,例如多模结构数据,因此在这种情况下非线性分类器更能体现出其优越的性能,并且此时准则已不是核优化准则的最好选择。受此启发,我们提出了一种新的核优化算法,该方法依靠局部核准则,在特征空间最大化局部类可分性以增大特征空间中各类间的局部距离,从而使得非线性分类器在核函数定义的特征空间中的的分类性能得到改进;硗猓現荚蚪鲈诟骼嗍菥为协方差矩阵相同但均值向量不同的多元正态分布,并且每类数据都是单聚类结构的假设条件下,才是最优的。由于这个假设的限制,在一些应用中准则析已经被提出。因此,为了将这些判别准则应用于核优化中,基于依赖数据的核函数形式,我们提出了一个统一的核优化框架,该优化框架能使用任何可以写为别准则,仅修改对应的伴随矩阵即可,而不需要任何特征空间中复杂的公式推导。⑹紫却恿餍渭负蔚慕嵌壤囱袄状锔叻直婢嗬胂猿中的非线性结构。然后,针对目标的姿态敏感性,在假设位于一低维流形基础上,利用流形的弯曲率,提出了一种自适应分割角域的方法。⑻岢鲆恢中碌奶卣餮≡竦姆椒āL卣餮≡袷腔餮傲煊蛑薪夏训囊桓鲎合任务,同时也具有较高的实用价值。我们的工作是,针对诜掷嗥魈岢鲆值。代价函数的目的是利用一个较大的边界分离异类样本,同时拉近同类样本间关键词:雷达自动目标识别,高分辨距离像,方位敏感性,平移敏感性,核函数、核函数优化、特征提取、准则、支撑向量机、流形学习、大间隔、,这个结论已被广泛认同。理想情况下,数据在期望的核函数定义的特征空间中能够线性可分,因此线性可分性准则可以作为一种核优化规则。然而在许多应用中,即使在核空间转换后数据仍未达到线性显然已不是核优化准则的最好选择。为了解决这一问题,近来许多改进的判别分样本对的形式判别准则作为代价函数。在该优化框架下,如果需要应用不同的判种大边界特征加权算法。该算法主要通过最小化一个代价函数学习相应的特征权的距离,并且使用尽可能少的特征。相应的优化问题可以使用线性规划算法有效得到最优解。基于核方法的雷达目标识别技术研究西安电子科技大学博士论文
知识水坝***@pologoogle为您整理
甂甌,甌虎騦