文档介绍:要摘变化,所以我们设计了根据源/结果图像梯度的幅度和方向相似性的图像融合质量评估方法,这种方法在理论上可以衡量结果中大部分点的灰度逆序情况,避效地增强了红外图像;针对电视图像增强中的均值保持的要求,设计了一个均值约束下的最大熵问题,即把均衡的直方图理解成最大熵的直方图,利用交分一个更为直观的平坦性描述,利用凸优化求出了最佳目标直方图,根据这个目变换时,借用了一种精确的直方图映射算法,在严格保持均值的条件下对图像将现有的变分偏微分方程图像融合方法从二维推广到三维,定义了多波段三维图像的对比度,再利用变分方法对多波段三维医学图像实现了有效的融现有变分偏微分方程图像融合中来,设计了基于主观对比度的变分图像融合算设计了具备重要特征保持能力的图像融合方法;由于图像中的重要信息是局部关于椒盐噪声去除问题,我们利用自适应中值滤波检测图像中可能的噪声图像处理是一个光学、电子学、数学、成像学和计算机技术学的交叉学科,并且在众多科学与工程领域有重要应用。目前在图像处理领域有随机建模、小波理论和偏微分方程三大类方法。本论文集中探讨了变分偏微分方程方法在图像增强、融合、去噪和图像分解方面的一些关键问题,主要工作和创新成果如下:图像中的邻域变化对应着一些重要的内容,据此首先设计了一种简单的梯度场线性放大的图像增强方法;其后考虑红外图像噪声较大的特点,针对噪声作了特殊的抑制之后设计了一个随梯度变化而自适应改变的梯度放大系数,这个系数对于大的梯度几乎不放大,防止了梯度场所反映的动态范围过大而带来的伪影效应,同时在重构时加入了图像的全变差约束,进一步抑制了噪声,有方法求出了这个直方图的闭式解,然后利用直方图规定化进行变换,在保持均值的条件下对图像进行了有效的增强;另外,关于目标直方图的确定,选择了标直方图的结果特点,设计了求取目标的简化算法,在对图像做目标直方图的进行了有效的增强。合:结合芍械牧俳绺兄1浠概念,将主观对比度的概念引入到法:对于不同波段,不同点的梯度反映的信息具有不同的重要性,采用各点自身的重要性对于各波段进行加权处理,求取加权数据的统计量作为融合目标,免现有一些算法的错误评价。中咽科学技术大学博士学位论史
知识水坝***@pologoogle为您整理
缘图像的压缩,对于结构图像最终的压缩结果,具有很好的主观视觉效果,没点,然后采用全变差结构图像修复方法对检测出的噪声点做填充,这种填充本身是与噪声值无关的,可以很好的恢复被椒盐噪声严重污染的图像,恢复效果优于现有算法;对于随机值冲击噪声,设计了自适应噪声图来检测可能的噪声点,然后进行全变差恢复,“恶性循环”的弊端,去噪效果也优于现有方法。根据现有对结构和纹理描述的分析,将甋P秃虶空间结合起来,提出了猄瓽图像纹理/结构分解算法,该算法分解得到的结构成分在边缘点以外的部分非常光滑,没有模型在噪声下的阶梯效应,同时纹理成分也可以得到充分的分离,其分解结果可能被其他的图像处理算法使用;给出了纹理/结构分解后两个成分分别处理的一种改进压缩算法,这种改进算法将结构成分压缩所产生的误差叠加到纹理成分中,减少了误差来源,同时在理论上证明了该算法相对于现有两种成分分别压缩的方法始终具有信噪比增益;考虑到结构型图像中重要的信息是边缘信息,只利用边缘及邻域的信息就可以用图像修复的方法恢复出原始图像,提出了针对边缘及邻域信息的结构图像压缩方法,这种方法结合了边缘跟踪、游程编码和矢量量化技术,有效做到了边有低码率下压缩的块效应,也没有的振铃效应。关键诃:变分方法、偏微分方程、图像处理、图像增强、图像融合、图像去噪、纹理/结构分解、图像压缩、人类视觉系统摘要一
知识水坝***@pologoogle为您整理
.;琣甌琺,—,琺,,琣瑆中围Ъ际醮笱Р┥涎宦畚瑆..甶瑃瑂瑆,琣,;瑆.,籥瑆猣,.,猚琣;狣痵,;琖·
瑃酊,琣琲∥,猄·瑆琧琲琲琲;瑆瑆停琩琣瑃瓵瑂琣,猳猘籪瑆,,.琣,粀,;琫·,—,:,琱猼
插图录目的目标直方图。荁图坛滔测地线侍馐疽馔肌蚆的分割阈值,鞘淙胪枷竦闹狈酵己数,乳鞘涑鐾枷竦闹狈酵己#图猯模型引起的阶梯效应:例子。自左而右为观测信号和去噪的结果。图模型引起的阶梯效应:例子。自左而右为观测信号图菹呶侍馐疽馔迹图等周问题示意图。图悬链形状问题示意图。图叶纫窖枷窦虻ヌ荻确糯笤銮浚图灰度卫星图片简单梯度放大增强.。.................图彩色图像增强算法框图........................图噬枷裨銮亢臀辈噬成洌图简单的梯度放大增强的伪影效应示例...............,图焱庖咕昂妥笊辖墙ㄖ糯笸荚銮浚图红外望远镜拍摄的星云图像增强...,...............图野外吉普车和前轮放大图增强..................