1 / 22
文档名称:

有限元点题.doc

格式:doc   大小:2,821KB   页数:22页
该资料是网友上传,本站提供全文预览,预览什么样,下载就什么样,请放心下载。
点击预览全文
下载后只包含 1 个 DOC 格式的文档,没有任何的图纸或源代码,查看文件列表

如果您已付费下载过本站文档,您可以点这里二次下载

分享

预览

有限元点题.doc

上传人:在水一方 2019/3/21 文件大小:2.75 MB

下载得到文件列表

有限元点题.doc

相关文档

文档介绍

文档介绍:Forpersonaluseonlyinstudyandresearch;mercialuse一、有限元的作用?答:在大力推广CAD技术的今天,从自行车到航天飞机,所有的设计制造都离不开有限元分析计算,FEA在工程设计和分析中将得到越来越广泛的重视。有限元方法的应用:1、转向机构支架的强度分析(MSC/Nastran完成)。2、金属成形过程分析(用Deform软件完成):分析金属成形过程中的各种缺陷。3、焊接残余应力分析(用Sysweld完成)。4、BMW曲轴的感应淬火(用SysWeld软件完成)。5、复杂形状工件的组织转变预测:预测工件的组织分布和机械性能。6、其他的应用还包括:电磁学、流体力学、电磁场等等。网格划分的原则?答:1网格数量:网格数量的多少将影响计算结果的精度和计算规模的大小。一般来讲,网格数量增加,计算精度会有所提高,但同时计算规模也会增加,所以在确定网格数量时应权衡两个因数综合考虑。网格较少时增加网格数量可以使计算精度明显提高,而计算时间不会有大的增加。当网格数量增加到一定程度后,再继续增加网格时精度提高甚微,而计算时间却有大幅度增加。实际应用时可以比较两种网格划分的计算结果,如果两次计算结果相差较大,可以继续增加网格,相反则停止计算。在决定网格数量时应考虑分析数据的类型:1、在静力分析时,如果仅仅是计算结构的变形,网格数量可以少一些。2、计算应力,则在精度要求相同的情况下应取相对较多的网格。3、在响应计算中,计算应力响应所取的网格数应比计算位移响应多。4、在计算结构固有动力特性时,若仅仅是计算少数低阶模态,可以选择较少的网格,如果计算的模态阶次较高,则应选择较多的网格。2网格疏密网格疏密是指在结构不同部位采用大小不同的网格,这是为了适应计算数据的分布特点。在计算数据变化梯度较大的部位(如应力集中处),为了较好地反映数据变化规律,需要采用比较密集的网格。而在计算数据变化梯度较小的部位,为减小模型规模,则应划分相对稀疏的网格。3单元阶次许多单元都具有线性、二次和三次等形式,其中二次以上的称为高阶单元。高阶单元的曲线或曲面边界能够更好地逼近结构的曲线和曲面边界,且高次插值函数可更高精度地逼近复杂场函数,所以当结构形状不规则、应力分布或变形很复杂时可以选用高阶单元。但高阶单元的节点数较多,在网格数量相同的情况下由高阶单元组成的模型规模要大得多,因此在使用时应权衡考虑计算精度和时间。在精度一定的情况下,用高阶单元离散结构时应选择适当的网格数量,太多的网格并不能明显提高计算精度,反而会使计算时间大大增加。为了兼顾计算精度和计算量,同一结构可以采用不同阶次的单元,即精度要求高的重要部位用高阶单元,精度要求低的次要部位用低阶单元。不同阶次单元之间或采用特殊的过渡单元连接,或采用多点约束等式连接。4网格质量网格质量是指网格几何形状的合理性。质量好坏将影响计算精度,质量太差的网格甚至会中止计算。直观上看,网格各边或各个内角相差不大、网格面不过分扭曲、边节点位于边界等份点附近的网格质量较好。网格质量可用细长比、锥度比、内角、翘曲量、拉伸值、边节点位置偏差等指标度量。在重点研究的结构关键部位,应保证划分高质量网格,即使是个别质量很差的网格也会引起很大的局部误差。而在结构次要部位,网格质量可适当降低。5网格分界面和分界点结构中的一些特殊界面和特殊点应分为网格边界或节点以便定义材料特性、物理特性、载荷和位移约束条件。即应使网格形式满足边界条件特点,而不应让边界条件来适应网格。常见的特殊界面和特殊点有材料分界面、几何尺寸突变面、分布载荷分界线(点)、集中载荷作用点和位移约束作用点等。6位移协调性位移协调是指单元上的力和力矩能够通过节点传递相邻单元。为保证位移协调,一个单元的节点必须同时也是相邻单元的节点,而不应是内点或边界点。相邻单元的共有节点具有相同的自由度性质。否则,单元之间须用多点约束等式或约束单元进行约束处理。7网格布局当结构形状对称时,其网格也应划分对称网格,以使模型表现出相应的对称特性(如集中质矩阵对称)。不对称布局会引起一定误差。8节点和单元编号节点和单元的编号影响结构总刚矩阵的带宽和波前数,因而影响计算时间和存储容量的大小,因此合理的编号有利于提高计算速度。但对复杂模型和自动分网而言,人为确定合理的编号很困难,目前许多有限元分析软件自带有优化器,网格划分后可进行带宽和波前优化,从而减轻人的劳动强度。有限元--如何构造最合理的位移模式,根据划分的网格写出位移模式。空间有限元1、位移模式:轴对称问题的环向位移恒等于零,径向r位移与轴向z位移不等于零。对于图示情形,依照平面问题的三角形单元分析,取位移模式为代入节点位移后,可解出a1-a6,再代入上式,得其中形函数:单元中位移平面弹性问题有限元位移模式采用坐标x、y的多项式的