文档介绍:2006年全国中考数学压轴题解析点评之(四)
16(吉林长春课改卷)如图①,正方形的顶点的坐标分别为,,沿正方形按逆时针方向匀速运动,同时,点从点出发,,两点同时停止运动,设运动的时间为秒.
(1)求正方形的边长.
(2)当点在边上运动时,的面积(平方单位)与时间(秒)之间的函数图象为抛物线的一部分(如图②所示),求两点的运动速度.
(3)求(2)中面积(平方单位)与时间(秒)的函数关系式及面积取最大值时点的坐标.
(4)若点保持(2)中的速度不变,则点沿着边运动时,的大小随着时间的增大而增大;沿着边运动时,,使的点有个.
(抛物线的顶点坐标是.
图②
图①
[解] (1)作轴于.
,
.
.
(2)由图②可知,点从点运动到点用了10秒.
又.
两点的运动速度均为每秒1个单位.
(3)方法一:作轴于,则.
,即.
.
.
,
.
即.
,且,
当时,有最大值.
此时,
点的坐标为. (8分)
方法二:当时,.
设所求函数关系式为.
抛物线过点,
.
,且,
当时,有最大值.
此时,
点的坐标为.
(4).
[点评]本题主要考查函数性质的简单运用和几何知识,是近年来较为流行的试题,解题的关键在于结合题目的要求动中取静,相信解决这种问题不会非常难。
17、(山东青岛课改卷)如图①,有两个形状完全相同的直角三角形ABC和EFG叠放在一起(点A与点E重合),已知AC=8cm,BC=6cm,∠C=90°,EG=4cm,∠EGF=90°,O 是△EFG斜边上的中点.
如图②,若整个△EFG从图①的位置出发,以1cm/s 的速度沿射线AB方向平移,在△EFG 平移的同时,点P从△EFG的顶点G出发,以1cm/s 的速度在直角边GF上向点F运动,当点P到达点F时,点P停止运动,△(s),FG的延长线交 AC于H,四边形OAHP的面积为y(cm2)(不考虑点P与G、F重合的情况).
(1)当x为何值时,OP∥AC ?
(2)求y与x 之间的函数关系式,并确定自变量x的取值范围.
(3)是否存在某一时刻,使四边形OAHP面积与△ABC面积的比为13∶24?若存在,求出x的值;若不存在,说明理由.
(参考数据:1142 =12996,1152 =13225,1162 =13456
=, =, =)
[解] (1)∵Rt△EFG∽Rt△ABC ,
∴,.
∴FG==3cm.
∵当P为FG的中点时,OP∥EG ,EG∥AC ,
∴OP∥AC.
∴ x ==×3=(s).
∴,OP∥AC .
(2)在Rt△EFG 中,由勾股定理得:EF =5cm.
∵EG∥AH ,
∴△EFG∽△AFH .
∴.
∴.
∴ AH=( x +5),FH=(x+5).
过点O作OD⊥FP ,垂足为 D .
∵点O为EF中点,
∴OD=EG=2cm.
∵FP=3-x ,
∴S四边形OAHP =S△AFH -S△OFP
=·AH·FH-