文档介绍:本资料来源于《七彩教育网》
2009年高考数学难点突破专题辅导十四
难点14 数列综合应用问题
纵观近几年的高考,在解答题中,有关数列的试题出现的频率较高,不仅可与函数、方程、不等式、复数相联系,而且还与三角、立体几何密切相关;数列作为特殊的函数,在实际问题中有着广泛的应用,如增长率,减薄率,银行信贷,浓度匹配,养老保险,,还要善于观察题设的特征,联想有关数学知识和方法,迅速确定解题的方向,以提高解数列题的速度.
●难点磁场
(★★★★★)已知二次函数y=f(x)在x=处取得最小值- (t>0),f(1)=0.
(1)求y=f(x)的表达式;
(2)若任意实数x都满足等式f(x)·g(x)+anx+bn=xn+1[g(x)]为多项式,n∈N*),试用t表示an和bn;
(3)的方程为(x-an)2+(y-bn)2=rn2,+1外切(n=1,2,3,…);{rn}是各项都是正数的等比数列,记Sn为前n个圆的面积之和,求rn、Sn.
●案例探究
[例1]从社会效益和经济效益出发,某地投入资金进行生态环境建设,并以此发展旅游产业,根据规划,本年度投入800万元,以后每年投入将比上年减少,本年度当地旅游业收入估计为400万元,由于该项建设对旅游业的促进作用,预计今后的旅游业收入每年会比上年增加.
(1)设n年内(本年度为第一年)总投入为an万元,旅游业总收入为bn万元,写出an,bn的表达式;
(2)至少经过几年,旅游业的总收入才能超过总投入?
命题意图:本题主要考查建立函数关系式、数列求和、不等式等基础知识;考查综合运用数学知识解决实际问题的能力,本题有很强的区分度,属于应用题型,正是近几年高考的热点和重点题型,属★★★★★级题目.
知识依托:本题以函数思想为指导,以数列知识为工具,涉及函数建模、数列求和、不等式的解法等知识点.
错解分析:(1)问an、bn实际上是两个数列的前n项和,易与“通项”混淆;(2)问是既解一元二次不等式又解指数不等式,易出现偏差.
技巧与方法:正确审题、深刻挖掘数量关系,建立数量模型是本题的灵魂,(2)问中指数不等式采用了换元法,是解不等式常用的技巧.
解:(1)第1年投入为800万元,第2年投入为800×(1-)万元,…第n年投入为800×(1-)n-1万元,所以,n年内的总投入为
an=800+800×(1-)+…+800×(1-)n-1=800×(1-)k-1
=4000×[1-()n]
第1年旅游业收入为400万元,第2年旅游业收入为400×(1+),…,第n年旅游业收入400×(1+)n-,n年内的旅游业总收入为
bn=400+400×(1+)+…+400×(1+)k-1=400×()k-1.
=1600×[()n-1]
(2)设至少经过n年旅游业的总收入才能超过总投入,由此bn-an>0,即:
1600×[()n-1]-4000×[1-()n]>0,令x=()n,代入上式得:5x2-7x+2>,得x<,或x>1(舍去).即()n<,由此得n≥5.
∴至少经过5年,旅游业的总收入才能超过总投入.
[例2]已知Sn=1++…+,(n∈N*)设f(n)=S2n+1-Sn+1,试确定实数m的取值范