文档介绍:难点27求空间的角空间的角是空间图形的一个要素,在异面直线所成的角、线面角、二面角等知识点上,较好地考查了学生的逻辑推理能力以及化归的数学思想.●难点磁场(★★★★★)如图,α—l—β为60°的二面角,等腰直角三角形MPN的直角顶点P在l上,M∈α,N∈β,且MP与β所成的角等于NP与α所成的角.(1)求证:MN分别与α、β所成角相等;(2)求MN与β所成角.●案例探究[例1]在棱长为a的正方体ABCD—A′B′C′D′中,E、F分别是BC、A′D′的中点.(1)求证:四边形B′EDF是菱形;(2)求直线A′C与DE所成的角;(3)求直线AD与平面B′EDF所成的角;(4)求面B′:本题主要考查异面直线所成的角、线面角及二面角的一般求法,综合性较强,属★★★★★:平移法求异面直线所成的角,:对于第(1)问,若仅由B′E=ED=DF=FB′就断定B′EDF是菱形是错误的,因为存在着四边相等的空间四边形,必须证明B′、E、D、:求线面角关键是作垂线,找射影,.(1)证明:如上图所示,由勾股定理,得B′E=ED=DF=FB′=a,下证B′、E、D、F四点共面,取AD中点G,连结A′G、EG,由EGABA′B′知,B′EGA′是平行四边形.∴B′E∥A′G,又A′FDG,∴A′GDF为平行四边形.∴A′G∥FD,∴B′、E、D、F四点共面故四边形B′EDF是菱形.(2)解:如图所示,在平面ABCD内,过C作CP∥DE,交直线AD于P,则∠A′CP(或补角)为异面直线A′△A′CP中,易得A′C=a,CP=DE=a,A′P=a由余弦定理得cosA′CP=故A′os.(3)解:∵∠ADE=∠ADF,∴AD在平面B′EDF内的射影在∠∵B′EDF为菱形,∴DB′为∠EDF的平分线,故直线AD与平面B′EDF所成的角为∠ADB′在Rt△B′AD中,AD=a,AB′=a,B′D=a则cosADB′=故AD与平面B′os.(4)解:如图,连结EF、B′D,交于O点,显然O为B′D的中点,从而O为正方形ABCD—A′B′C′⊥平面ABCD,则H为正方形ABCD的中心,再作HM⊥DE,垂足为M,连结OM,则OM⊥DE,故∠OMH为二面角B′—DE′—△DOE中,OE=a,OD=a,斜边DE=a,则由面积关系得OM=a在Rt△OHM中,sinOMH=故面B′EDF与面ABCD所成的角为arcsin.[例2]如下图,已知平行六面体ABCD—A1B1C1D1中,底面ABCD是边长为a的正方形,侧棱AA1长为b,且AA1与AB、AD的夹角都是120°.求:(1)AC1的长;(2):本题主要考查利用向量法来解决立体几何问题,属★★★★★:向量的加、:注意<>=<,>=120°而不是60°,<>=90°.技巧与方法:数量积公式及向量、模公式的巧用、变形用.∴BD1与AC所成角的余弦值为.●锦囊妙计空间角的计算步骤:一作、二证、