1 / 10
文档名称:

初中几何辅助线口诀.docx

格式:docx   大小:74KB   页数:10页
下载后只包含 1 个 DOCX 格式的文档,没有任何的图纸或源代码,查看文件列表

如果您已付费下载过本站文档,您可以点这里二次下载

分享

预览

初中几何辅助线口诀.docx

上传人:wz_198613 2019/6/10 文件大小:74 KB

下载得到文件列表

初中几何辅助线口诀.docx

相关文档

文档介绍

文档介绍:初中几何辅助线口诀(含经典题解析)三角形图中有角平分线,可向两边作垂线。也可将图对折看,对称以后关系现。角平分线平行线,等腰三角形来添。角平分线加垂线,三线合一试试看。线段垂直平分线,常向两端把线连。线段和差及倍半,延长缩短可试验。线段和差不等式,移到同一三角去。三角形中两中点,连接则成中位线。三角形中有中线,倍长中线得全等。四边形平行四边形出现,对称中心等分点。梯形问题巧转换,变为三角或平四。平移腰,移对角,两腰延长作出高。如果出现腰中点,细心连上中位线。上述方法不奏效,过腰中点全等造。证相似,比线段,添线平行成习惯。等积式子比例换,寻找线段很关键。直接证明有困难,等量代换少麻烦。斜边上面作高线,比例中项一大片。圆形半径与弦长计算,弦心距来中间站。圆上若有一切线,切点圆心半径联。切线长度的计算,勾股定理最方便。要想证明是切线,半径垂线仔细辨。是直径,成半圆,想成直角径连弦。弧有中点圆心连,垂径定理要记全。圆周角边两条弦,直径和弦端点连。弦切角边切线弦,同弧对角等找完。要想作个外接圆,各边作出中垂线。还要作个内接圆,内角平分线梦圆。如果遇到相交圆,不要忘作公共弦。内外相切的两圆,经过切点公切线。若是添上连心线,切点肯定在上面。要作等角添个圆,证明题目少困难。由角平分线想到的辅助线一、截取构全等如图,AB//CD,BE平分∠ABC,CE平分∠BCD,点E在AD上,求证:BC=AB+CD。分析:在此题中可在长线段BC上截取BF=AB,再证明CF=CD,从而达到证明的目的。这里面用到了角平分线来构造全等三角形。另外一个全等自已证明。此题的证明也可以延长BE与CD的延长线交于一点来证明。自已试一试。二、角分线上点向两边作垂线构全等如图,已知AB>AD,∠BAC=∠FAC,CD=BC。求证:∠ADC+∠B=180 分析:可由C向∠BAD的两边作垂线。近而证∠ADC与∠B之和为平角。三、三线合一构造等腰三角形如图,AB=AC,∠BAC=90,AD为∠ABC的平分线,CE⊥:BD=2CE。四、角平分线+平行线分析:延长此垂线与另外一边相交,得到等腰三角形,随后全等。如图,AB>AC,∠1=∠2,求证:AB-AC>BD-CD。分析:AB上取E使AC=AE,通过全等和组成三角形边边边的关系可证。由线段和差想到的辅助线截长补短法 AC平分∠BAD,CE⊥AB,且∠B+∠D=180°,求证:AE=AD+BE。分析:过C点作AD垂线,得到全等即可。由中点想到的辅助线一、中线把三角形面积等分如图,ΔABC中,AD是中线,延长AD到E,使DE=AD,DF是ΔDCE的中线。已知ΔABC的面积为2,求:ΔCDF的面积。分析:利用中线分等底和同高得面积关系。二、中点联中点得中位线如图,在四边形ABCD中,AB=CD,E、F分别是BC、AD的中点,BA、CD的延长线分别交EF的延长线G、H。求证:∠BGE=∠CHE。分析:联BD取中点联接联接,通过中位线得平行传递角度。三、倍长中线如图,已知ΔABC中,AB=5,AC=3,连BC上的中线AD=2,求BC的长。分析:倍长中线得到全等易得。四、RTΔ斜边中线如图,已知梯形ABCD中,AB//DC,AC⊥BC,AD⊥BD,求证:AC=BD。由全等三角形想到的辅助线分析:取AB中点得RTΔ斜边中线得到等量关系。一、倍长过中点得线段已知