文档介绍:基于 H∞理论的电磁轴承控制器设计
(工程技术学院 99自动化游兴强)
(学号:1999112239)
内容提要:介绍了电磁轴承系统的组成,针对磁悬浮控制系统,考虑存在噪声和扰动的
情况,提出了在频域中如何选择合适的加权阵。对磁悬浮轴承模型进行仿真,结果表明将控
制量的加权阵作为调整参数进行设计对提高闭环系统的鲁棒性是有益的。H∞控制与相应的
PID 控制进行比较,PID 控制有 13%的超调量,而 H∞控制只有 1%。加权阵的选择方法,
既适用 SISO 系统,也适用 MIMO 系统。
关键词:电磁轴承,鲁棒控制,仿真
教师点评:该论文是国家自然科学基金资助工作的一部分内容,对自动化专业的本科生
来讲难度大。作者推导了磁悬浮轴承系统的动力学模型,考虑了模型参数的不确定和未建模
的动态误差。应用 H∞最优控制设计法,设计了基于 H∞理论的电磁轴承控制器。提出在频
域中选择适当的加权阵的方法,通过开发的 MATLAB 程序进行了仿真,仿真结果给出了控
制器的加权阵与鲁棒性的关系。对所设计的 H∞控制器与传统 PID 控制器进行了仿真对比,
表明 H∞控制器的优越性。是一篇高质量的毕业设计论文。(点评教师:曹广忠,副教授)
引言
由于参数不确定和未建模动态误差使得基于分析得到的电磁轴承数学模型的设计方法
不能获得良好的控制性能。1981 年,加拿大学者 Zames 研究了处理扰动与系统不确定性的
数学基础,提出了 H∞最优设计方法。假定干扰信号属于某一能量有限的已知信号集,要求
设计一个反馈控制器,使闭环系统稳定,且干扰对系统输出的影响最小。要解决这样的问题,
就需要在能使闭环系统稳定的所有控制器中选出一个控制器,使之相应的灵敏度函数的 H∞
范数最小,对于最大干扰的抑制,通过使加权灵敏度函数的 H∞范围的最小化来实现,这在
一定程度上也优化了系统对参数扰动的鲁棒性。
H∞优化方法能够改善电磁轴承的控制性能,提高轴向电磁轴承的稳定性和抗干干扰能
力。本文对电磁轴承控制器进行了优化设计并进行了仿真验证。
电磁轴承系统的组成
电磁轴承系统主要由被悬浮物体(即转子)、位移传感器、控制器和功率放大器组成。
图(1-1)为主动磁轴承的工作原理示意图。传感器检测出转子偏离参考点(平衡位置)的
位移量,控制器将检测到的位移变换成控制信号,然后功率放大器将这一信号转换成电流,
控制电流在执行磁铁中产生磁力,从而使转子维持其悬浮位置不变。
图 1-1 主动磁轴承的工作原理
以单自由度电磁轴承系统的线性化模型作为分析研究对象,其闭环系统框图见图 1-2
1
d
r+ e y
K(s) Ka G(s)
-
Ks n
图 1-2 电磁轴承闭环系统框图
功率放大器 Ka,位移传感器 Ks,K(s)为控制器,G(s)为磁轴承模型,
K
G ( s ) = i ,
2 +
ms K v
r 为参考输入,e 跟踪误差,u 控制输入,d 量测干扰,n 为量测噪声,y 为系统输出。
上图可以简化为单位负反馈,如下图:
d
r + e u y
K(s) G(s)