文档介绍:试论广东省高等教育对经济增长贡献率的测算
摘要:根据柯布—道格拉斯(C-D)的生产函数构造回归模型,通过对有关数据的检索、处理,并借助于SPSS软件对其进行回归分析,得出产出的劳动投入弹性β=,进而得出2000-2008年间,%;%,这说明广东的教育对经济增长率的贡献是比较低的。
关键词:高等教育广东经济增长率贡献
高等教育不仅对经济社会的发展有着直接的贡献,而且可以通过提高劳动者素质达到对经济增长的贡献。因此,测算广东省高等教育对经济增长的贡献率,对于处理好广东省高等教育发展与经济增长的关系具有重要的意义。
一、计算高等教育对经济增长贡献率的模型选择
在定量分析中,柯布—道格拉斯(C-D)生产函数是国内外众多估算方法的基础,本文也主要在柯布—道格拉斯(C-D)生产函数的基础上进一步细分教育投入和经济产出之间的函数关系。
柯布—道格拉斯(C-D)生产函数是由美国数学家柯布和经济学家道格拉斯根据历史统计资料,研究二十世纪处在研究美国制造业劳动和资本对产出的作用时得出一个生产函数,即着名的柯布—道格拉斯(C-D)生产函数:
Y=AKαLβ(1)
这个生产函数可以表述为:假设土地数量没有变化,导致经济增长的因素抽象为资本K、劳动L和技术进步率A,K、L可以相互替代,且能以可变的比例组合,又假设经济发展处于完全竞争的市场经济条件下,生产要素都以其边际产品作为报酬,规模报酬保持不变,那么在时间t范围内变化的中性技术进步的产出增长模型可以被构造为:Yt=At Kt
αLtβ(2)
其中,Yt是第t期经济产出量,用GDP表示; At为第t期技术水平,一般作为常数;Kt为第t期的物质资本存量;Lt为第t期人力资本存量;α是资本的产出弹性系数,β是劳动的产出弹性系数,而且α﹥0,β﹥0,α﹢β=1 。
人力资本理论认为教育能提高劳动力的质量,也就等于使初始劳动力投入量成倍增加,因此可以将劳动投入量细化为初始劳动力L0与教育投入E的乘积,于是公式(1)就可以转化为: Yt=AtKαt(L0tEt)β(3)
这同时和新经济增长理论的代表人物卢卡斯(Robert E Lucas)于1988年提出的内生经济增长模型Y=Kα(Hl)1-α的思想基本一致(《经济增长导论》,2002)对公式(3)两边取自然对数后再求时间t的全导数,然后再用差分方程近似代替微分方程得到方程:y=a+αk+βl0+βe(4)
其中,y表示一定时期内经济的年均增长率,a为社会技术进步的水平增长率,α表示产出的资本投入弹性,K为资本投入的年均增长率,β表示产出的劳动投入弹性,l0代表初始劳动投入的年均增长率,e代表教育投入的年均增长率。因此,估算教育对经济增长率的贡献可表示为:
Re=(ye/y)×100%=(βe/y)×100% (5)
公式(5)是目前国际广泛采用的计算教育对经济增长贡献率的模型,它表示教育这个要素投入所带来的那部分国民产值的增长率占国民产值总增长率的比率。在实际计算过程中,教育投入的年均增长率e也可以表示教育综合指数的年均增长率。在此基础上进一步求出广东高等教育对经济增长的贡献。
二、劳动的产出弹性系数β的测算
在本文的模