文档介绍:(第2页例1)分数乘整数的意义:分数乘整数表示求几个相同加数的和的简便运算。如:34×7表示7个34相加。分数乘整数的计算方法:分数乘整数,用分子乘整数的积作分子,分母不变。能先约分的可以先约分,再计算,结果相同。(第3页例2)一个数乘几分之几,表示求这个数的几分之几是多少。求一个数的几分之几是多少,用乘法计算,即:这个数×几分之几。注意:一个数包括分数、小数、整数。如:7×34表示求7的34是多少?反之:7的34是多少?就用:7×34;再如:×?反之:?就用:×34。(第3页例3)分数乘分数的表示意义:分数乘分数的表示意义与一个数乘几分之几的表示意义相同,即表示求第一个分数的几分之几是多少。分数乘分数的计算方法:分数乘分数,用分子乘分子的积作分子,用分母乘分母的积作分母。(第5页例4)为了计算简便,可以先约分再乘。(第8页例5)分数乘小数,可以把分数化成小数再乘,也可以把小数化成分数再乘,但一般采用把小数化成分数再乘,因为有些分数化不成有限小数。(第8页例6)分数混合运算的顺序和整数混合运算的顺序相同,即:有括号的,先算括号里面的,再算括号外面的。没有括号的,先算乘法,再算加减法。如果只有加减法的,按从左往右的顺序计算。(第9页例7)整数乘法的交换律、结合律、分配律。对于分数乘法也适用。乘法交换律:两个数相乘,交换因数的位置,积不变。用字母表示:a×b=b×a。乘法结合律:三个数相乘,可以先把前两个数相乘,或者先把后两个数相乘,积不变。用字母表示:a×b×c=(a×b)×c=a×(b×c)乘法分配律:两个数的和与一个数相乘,可以把它们分别与这个数相乘,再加,结果不变。用字母表示:(a+b)×c=a×c+b×(连乘)(第13页例8)如:我班有36人,13的同学喜欢打篮球,喜欢打乒乓球的人数是喜欢打篮球人数的34。我班有多少名同学喜欢打乒乓球?(或少)几分之几的数是多少(第14页例9)如:乙数是10,甲数比乙数多15,甲数是多少?分析:把比字后面的乙数看成单位1,那甲数就是乙数的1+15=65,也就是甲数比乙数多15可以理解为甲数是乙数的65,根据求一个数的几分之几用乘法,得出关系式:甲数=乙数×65,把乙数换成10,得甲数=10×65。列综合式:10×(1+15)=10×65=12。补充:分数乘法的规律(1)一个数乘真分数,积小于这个数。(2)一个数乘假分数,积大于或等于这个数。第二单元位置与方向(二),用方向和距离描述某个点的位置(第19页例1)要确定一个点的位置,必须要确定观测点、方向和距离。点的位置是相对的,观测点改变,方向和距离也随之改变。完整说法就是要说清:谁在谁的什么偏什么几度方向上,距离是多少。如:学校在小明家北偏东25度方向上,距离是400米。这句话是在确定学校的位置,观察点是小明家,方向是北偏东25度,距离是400米。一般情况下,“在”字左面是要确定的点,“在”字右面是观察点。方向包括“东偏北,北偏东;南偏东,南偏西;西偏北,西偏南;北偏东,北偏西”八个“偏”,几度要看夹角,一般不超过45度。当超过45度时,就要用90度减去这个度数,再把方向颠倒过来,如:北偏东,就要改成东偏北。通常用小于45度的度数来描述。距离要看比例尺,1厘米代表多长,有几个这样的长度,就用“段数×比例尺代表的长度=距离”。,在图上确定某个点的位置(第20页例2)第一步,找方向:以“偏”字左面的字所在的线为0刻度线,坐标的中心为顶点,量取需要的度数画出一个角。第二步,定距离:看已知的长度里面有多少个比例尺代表的数量,画出多少段。即“已知长度÷比例尺代表的数量=段数”。第三步:标出角度和地点名称,地点名称就是“在”字左面的地点。(第22页例3和第26页第9题)(1)根据路线图说路线:每一个观测的描述跟上面第1条的方法一样,但每换一个观测点,就要重新建立坐标,更换方向,找出距离。(2)根据路线描述画路线图:每一个观察点的画法与上面第2条一样,但每换一个观测点,就要重新建立坐标系,按照上面绘图的三步法来画路线图。:(第28页例1)乘积是1的两个数互为倒数。0没有倒数,1的倒数还是1。找一个数的倒数,只需要交换分子、分母的位置。注意:除0之外,整数、小数都有倒数,不要误认为只有分数才有倒数。:(第30页例1)分数除以整数,表示把一个分数平均分成若干