文档介绍:(二)一、学生知识状况分析学生的知识基础:学生之前已经借助折纸、画图、测量、证明等活动探索过平行四边形、菱形、矩形的性质和判定,还在第一课时学习了正方形的性质,本节课主要是对正方形的判定进行推理证明,而前面的探索过程和方法为本节课的推理证明提供了铺垫,为学生提供了相应的定理证明思路。八年级时学生还学习了“三角形中位线定理”,这些都为本节课探究“中点四边形”做了铺垫,学生已经具备了探究该命题的基本技能。学生活动经验基础:在相关知识的学习过程中,学生经历了“探索—发现—猜想—证明”的过程,并初步体会了获得猜想后还应予以证明的意义,感受到了合情推理与演绎推理的相互依赖和相互补充的辨证关系,并且学生具有了一定的推理证明的能力。同时在以前的数学学习中学生已经经历了很多合作学习的过程,具有了一定的合作学习的经验,具备了一定的合作与交流的能力。二、教学任务分析教材基于学生对特殊平行四边形和三角形中位线定理的认识的基础之上,提出了本课的具体学习任务:掌握正方形判定定理、理解中点四边形形状取决于原四边形的对角线的位置和数量关系,但这仅仅是这堂课外显的近期目标。本课内容从属于“图形与几何”中的“图形的性质”,因而务必服务于演绎推理教学的远期目标:“让学生经历‘探索—发现—猜想—证明’的过程,体会证明的必要性,掌握用综合法证明的格式,初步感受公理化思想,发展空间观念”,同时也应力图在学习中逐步达成学生的有关情感态度目标。为此,本节课的教学目标是:知识与技能:,并能综合运用特殊四边形的性质和判定解决问题。,熟练运用特殊四边形的判定及性质对中点四边形进行判断,并能对自己的猜想进行证明,进一步发展学生演绎推理的能力。。过程与方法:“探索—发现—猜想—证明”的过程,掌握正方形的判定定理,发现决定中点四边形形状的因素,并能综合运用特殊四边形的性质和判定解决问题。,以及引申至凹四边形的中点四边形的探求过程,引导学生体会证明过程中所运用的由一般到特殊再到一般的归纳、类比、转化的思想方法等,培养积极探索、勇于创新的精神,以及推陈出新的创新能力。情感与态度:通过师生互动、合作交流以及多媒体软件的使用,进一步发展学生合作交流的能力和数学表达能力,并使学生发现数学中蕴涵的美,激发学生学习的自觉性、积极性,提高学习数学的兴趣。三、教学过程分析本节课设计了六个教学环节:第一环节:情景引入;第二环节:运用巩固;第三环节:猜想结论,分组验证;第四环节:学以致用;第五环节:课堂小结;第六环节:布置作业。第一环节:情景引入活动内容:问题:将一张长方形纸对折两次,然后剪下一个角,打开,怎样剪才能剪出一个正方形?(学生动手折叠、思考、剪切)活动目的:因为正方形的两条对角线把它分成四个全等的等腰直角三角形,把折痕作对角线,这时只需剪一个等腰直角三角形,打开即是正方形,因此只要保证剪口线与折痕成45°角即可。活动的注意事项:部分学生在动手操作时,会剪出菱形,教师要引导学生思考:正方形是特殊的矩形和菱形,因此想得到一个正方形,可以在矩形的基础上强化边的条件得到,也可以在菱形的基础上强化角的条件得到,而折痕是正方形的对角线,所以本环