1 / 20
文档名称:

数据挖掘7126.doc

格式:doc   大小:190KB   页数:20页
下载后只包含 1 个 DOC 格式的文档,没有任何的图纸或源代码,查看文件列表

如果您已付费下载过本站文档,您可以点这里二次下载

分享

预览

数据挖掘7126.doc

上传人:xinsheng2008 2019/8/21 文件大小:190 KB

下载得到文件列表

数据挖掘7126.doc

相关文档

文档介绍

文档介绍:数据挖掘技术的由来 ,通信、计算机和网络技术正改变着整个人类和社会。如果用芯片集成度来衡量微电子技术,用CPU处理速度来衡量计算机技术,用信道传输速率来衡量通信技术,那么摩尔定律告诉我们,它们都是以每18个月翻一番的速度在增长,这一势头已经维持了十多年。在美国,广播达到5000万户用了38年;电视用了13年;拨号上网达到5000万户仅用了4年。全球IP网发展速度达到每6个月翻一番,国内情况亦然。1999年初,中国上网用户为210万,现在已经达到600万。网络的发展导致经济全球化,在1998年全球产值排序前100名中,跨国企业占了51个,国家只占49个。有人提出,对待一个跨国企业也许比对待一个国家还要重要。在新世纪钟声刚刚敲响的时候,回顾往昔,人们不仅要问:就推动人类社会进步而言,历史上能与网络技术相比拟的是什么技术呢?有人甚至提出要把网络技术与火的发明相比拟。火的发明区别了动物和人,种种科学技术的重大发现扩展了自然人的体能、技能和智能,而网络技术则大大提高了人的生存质量和人的素质,使人成为社会人、全球人。现在的问题是:网络之后的下一个技术热点是什么?让我们来看一些身边俯拾即是的现象:《纽约时报》由60年代的10~20版扩张至现在的100~200版,最高曾达1572版;《北京青年报》也已是16~40版;市场营销报已达100版。然而在现实社会中,人均日阅读时间通常为30~45分钟,只能浏览一份24版的报纸。大量信息在给人们带来方便的同时也带来了一大堆问题:第一是信息过量,难以消化;第二是信息真假难以辨识;第三是信息安全难以保证;第四是信息形式不一致,难以统一处理。人们开始提出一个新的口号:“要学会抛弃信息”。人们开始考虑:“如何才能不被信息淹没,而是从中及时发现有用的知识、提高信息利用率?”面对这一挑战,数据开采和知识发现(DMKD)技术应运而生,并显示出强大的生命力。 ,随着数据库技术的迅速发展以及数据库管理系统的广泛应用,人们积累的数据越来越多。激增的数据背后隐藏着许多重要的信息,人们希望能够对其进行更高层次的分析,以便更好地利用这些数据。目前的数据库系统可以高效地实现数据的录入、查询、统计等功能,但无法发现数据中存在的关系和规则,无法根据现有的数据预测未来的发展趋势。缺乏挖掘数据背后隐藏的知识的手段,导致了“数据爆炸但知识贫乏”的现象。 。起初各种商业数据是存储在计算机的数据库中的,然后发展到可对数据库进行查询和访问,进而发展到对数据库的即时遍历。数据挖掘使数据库技术进入了一个更高级的阶段,它不仅能对过去的数据进行查询和遍历,并且能够找出过去数据之间的潜在联系,从而促进信息的传递。现在数据挖掘技术在商业应用中已经可以马上投入使用,因为对这种技术进行支持的三种基础技术已经发展成熟,他们是:--海量数据搜集--强大的多处理器计算机--数据挖掘算法Friedman[1997]列举了四个主要的技术理由激发了数据挖掘的开发、应用和研究的兴趣:--超大规模数据库的出现,例如商业数据仓库和计算机自动收集的数据记录;--先进的计算机技术,例如更快和更大的计算能力和并行体系结构;--对巨大量数据的快速访问;--对这些数据应用精深的统计方法计算的能力。商业数据库现在正在以一个空前的速度增长,并且数据仓库正在广泛地应用于各种行业;对计算机硬件性能越来越高的要求,也可以用现在已经成熟的并行多处理机的技术来满足;另外数据挖掘算法经过了这10多年的发展也已经成为一种成熟,稳定,且易于理解和操作的技术。 ,每一步前进都是建立在上一步的基础上的。见下表。表中我们可以看到,第四步进化是革命性的,因为从用户的角度来看,这一阶段的数据库技术已经可以快速地回答商业上的很多问题了。进化阶段商业问题支持技术产品厂家产品特点数据搜集“过去五年中我的总收入是多少计算机、磁带和磁盘IBM,CDC提供历史性的、静态的数据信息(60年代)?”数据访问(80年代)“在新英格兰的分部去年三月的销售额是多少?”关系数据库(RDBMS),结构化查询语言(SQL),ODBCOracle、Sybase、Informix、IBM、MicrosoftOracle、Sybase、Informix、IBM、Microsoft在记录级提供历史性的、动态数据信息数据仓库;决策支持(90年代)“在新英格兰的分部去年三月的销售额是多少?波士顿据此可得出什么结论?”联机分析处理(OLAP)、多维数据库、share、Arbor、Cognos、Microstrategy在各