文档介绍:二次函数综合题型精讲精练主讲:康老师题型一:二次函数中的最值问题例1:如图,在平面直角坐标系中,抛物线y=ax2+bx+c经过A(﹣2,﹣4),O(0,0),B(2,0)三点.(1)求抛物线y=ax2+bx+c的解析式;(2)若点M是该抛物线对称轴上的一点,求AM+:(1)把A(﹣2,﹣4),O(0,0),B(2,0)三点的坐标代入y=ax2+bx+c中,得解这个方程组,得a=﹣,b=1,c=0所以解析式为y=﹣x2+x.(2)由y=﹣x2+x=﹣(x﹣1)2+,可得抛物线的对称轴为x=1,并且对称轴垂直平分线段OB∴OM=BM∴OM+AM=BM+AM连接AB交直线x=1于M点,则此时OM+AM最小过点A作AN⊥x轴于点N,在Rt△ABN中,AB===4,因此OM+:已知一条直线上一动点M和直线同侧两个固定点A、B,求AM+BM最小值的问题,我们只需做出点A关于这条直线的对称点A’,将点B与A’连接起来交直线与点M,那么A’B就是AM+BM的最小值。同理,我们也可以做出点B关于这条直线的对称点B’,将点A与B’连接起来交直线与点M,那么AB’就是AM+BM的最小值。应用的定理是:两点之间线段最短。AABBM或者MA’B’例2:已知抛物线1C的函数解析式为23 ( 0)y ax bx a b? ???,若抛物线1C经过点(0, 3)?,方程23 0ax bx a? ??的两根为1x,2x,且1 24x x? ?。(1)求抛物线1C的顶点坐标.(2)已知实数0x?,请证明:1xx?≥2,并说明x为何值时才会有12xx? ?.(3)若抛物线先向上平移4个单位,再向左平移1个单位后得到抛物线2C,设1( , )A m y,2( , )B n y是2C上的两个不同点,且满足:090AOB? ?,0m?,0n?.请你用含有m的表达式表示出△AOB的面积S,并求出S的最小值及S取最小值时一次函数OA的函数解析式。解析:(1)∵抛物线过(0,-3)点,∴-3a=-3∴a=1∴y=x2+bx-3∵x2+bx-3=0的两根为x1,x2且21x-x=4∴21221214)(xxxxxx????=4且b<0∴b=-2∴y=x2-2x-3=(x-1)2-4∴抛物线C1的顶点坐标为(1,-4)(2)∵x>0,∴0)1(212?????xxxx∴,21??xx显然当x=1时,才有,21??xx(3)方法一:由平移知识易得C2的解析式为:y=x2∴A(m,m2),B(n,n2)∵ΔAOB为RtΔ∴OA2+OB2=AB2∴m2+m4+n2+n4=(m-n)2+(m2-n2)2化简得:mn=-1∵SΔAOB=OBOA?21=424221nnmm???∵mn=-1∴SΔAOB=22221221221mmnm?????=1221121)1(212????????????mmmm∴SΔAOB的最小值为1,此时m=1,A(1,1)∴直线OA的一次函数解析式为y=x方法提炼:①已知一元二次方程两个根x1,x2,求|x1-x2|。因为|x1-x2|=212214xx)x(x??可得到:根公式根据一元二次方程的求;24;242221aacbbxaacbbx????????.;2121acxxabxx????②,取得最小值。时,当211);(,21??????mmmommm例3:如图,已知抛物线经过点A(﹣1,0)、B(3,0)、C(0,3)三点.(1)求抛物线的解析式.(2)点M是线段BC上的点(不与B,C重合),过M作MN∥y轴交抛物线于N,若点M的横坐标为m,请用m的代数式表示MN的长.(3)在(2)的条件下,连接NB、NC,是否存在m,使△BNC的面积最大?若存在,求m的值;若不存在,:(1)设抛物线的解析式为:y=a(x+1)(x﹣3),则:a(0+1)(0﹣3)=3,a=﹣1;∴抛物线的解析式:y=﹣(x+1)(x﹣3)=﹣x2+2x+3.(2)设直线BC的解析式为:y=kx+b,则有:,解得;故直线BC的解析式:y=﹣x+,则M(m,﹣m+3)、N(m,﹣m2+2m+3);∴故MN=﹣m2+2m+3﹣(﹣m+3)=﹣m2+3m(0<m<3).(3)如图;∵S△BNC=S△MNC+S△MNB=MN(OD+DB)=MN×OB,∴S△BNC=(﹣m2+3m)×3=﹣(m﹣)2+(0<m<3);∴当m=时,△BNC的面积最大,:因为△BNC的面积不好直接求,将△BNC的面积分解为△MNC和△MNB的面积和。然后将△BNC的面积表示出来,得到一个关于m的二次函数。此题利用的就是二次函数求最值的思想,当二次函数的开口向下时,在顶点处取得最大