1 / 12
文档名称:

交工2马静,郭晓莹.doc

格式:doc   大小:67KB   页数:12页
下载后只包含 1 个 DOC 格式的文档,没有任何的图纸或源代码,查看文件列表

如果您已付费下载过本站文档,您可以点这里二次下载

分享

预览

交工2马静,郭晓莹.doc

上传人:wxc6688 2019/12/16 文件大小:67 KB

下载得到文件列表

交工2马静,郭晓莹.doc

相关文档

文档介绍

文档介绍:交工2马静,郭晓莹新能源轮毂汽车驱动受力情况交工08-2马静1轮毂式电动汽车发展现状轮毂式电动汽车是一种新兴的驱动式电动汽车,有两种基本形式,即直接驱动式电动轮和带轮边减速器电动轮。它直接将电机安装在车轮轮毂中,省略了传统的离合器、变速器、主减速器及差速器等部件,简化了整车结构,提高了传动效率,并且能通过控制技术实现对电动轮的电子差速控制。电动轮将成为未来电动汽车的发展方向。目前国际上对轮毂式电动汽车的研究主要以日本为主。日本庆应义塾大学的电动汽车研究小组已试制了5种不同形式的样车。其中,1991年与东京电力公司共同开发的4座电动汽车IZA,采用Ni-Cd电池为动力源,、峰值功率达到25kW的外转子式永磁同步轮毂电机驱动,最高速度可达176km/h。1996年,该小组联合日本国家环境研究所研制了电动轮驱动系统的后轮驱动电动汽车ECO,该车的电动轮驱动系统选用永磁直流无刷电动机,,峰值功率为20kW,并配以行星齿轮减速机,该电动轮采用机械制动与电机再生制动相结合的方式。2001年,该小组又推出了以锂电池为动力源,采用8个大功率交流同步轮毂电机独立驱动的电动轿车KAZ。该车安装了8个车轮,大大增加了该车的动力,从而使该车的最高速度达到311km/h。KAZ的电动轮系统中采用高转速、高性能内转子型电动机,其峰值功率可达55kW,提高了KAZ轿车的极限加速能力,使其0,100km/h加速时间达到8s。为了使电动机输出转速符合车轮的实际转速要求,KAZ电动轮系统匹配行星齿轮减速机构。KAZ前轮采用盘式制动器,后轮采用鼓式制动器。2003年日本丰田汽车公司在东京车展上推出的燃料电池概念车FINE-N也采用了电动轮驱动技术。美国通用汽车公司2001年试制的全新线控4轮驱动燃料电池概念车Autonomy也采用电动轮驱动型式,电动轮驱动系统灵活的控制与布置方式,使该车能更好地实现线控技术。国内对电动轮驱动方式的研究也取得了一些进展。同济大学研制的“春晖”系列燃料电池概念车采用了4个直流无刷轮毂电机独立驱动的电动轮模块。比亚迪于2004年在北京车展上展出的ET概念车也采用了电动汽车最新驱动方式:4个轮边电机独立驱动模式。中国科学院北京三环通用电气公司研制的电动轿车用直流无刷轮毂电机,又称电动车轮。,电压264V,双后轮直接驱动。中船总公司724研究所的4轮电动汽车,其电动机性能指标为:额定功率3kW,额定转速3000r/min,额定电压为110V。2电动轮汽车结构分析电动轮式电驱动系统有直接驱动式电动轮和带轮边减速器电动轮两种基本形式。这取决于是采用低速外转子还是高速内转子电动机。直接驱动式电动汽车采用低速外转子电动机,电动轮与车轮组成一个完整部件总成,采用电子差速方式,电机布置在车轮内部,直接驱动车轮带动汽车行驶。其主要优点是电机体积小、质量轻和成本低,系统传动效率高,结构紧凑,既有利于整车结构布置和车身设计,也便于改型设计。这种电动轮直接将外转子安装在车轮的轮辋上驱动车轮转动。然而电动汽车在起步时需要较大的转矩,也就是说安装在直接驱动型电动轮中的电动机必须能在低速时提供大转矩。为了使汽车能够有较好的动力性,电动机还必须具有很宽的转矩和转速调节范围。由于电机工作产生一定的冲击和振动,要求车轮轮辋和车轮支承必须坚固、可靠,同时由于非簧载质量大,要保证车辆的舒适性,要求对悬架系统弹性元件和阻尼元件进行优化设计,电机输出转矩和功率也受到车轮尺寸的限制,系统成本高。带轮边减速器电动轮电驱动系统采用高速内转子电动机,适合现代高性能电动汽车的运行要求。它起源于矿用车的传统电动轮,属于减速驱动类型,这种电动轮允许电动机在高速下运行,通常电动机的最高转速设计在4000,20000r/min,其目的是为了能够获得较高的比功率,而对电动机的其它性能没有特殊要求,可以采用普通的内转子高速电动机。减速机构布置在电动机和车轮之间,起到减速和增矩的作用,从而保证电动汽车在低速时能够获得足够大的转矩。电机输出轴通过减速机构与车轮驱动轴连接,使电机轴承不直接承受车轮与路面的载荷作用,改善了轴承的工作条件;采用固定速比行星齿轮减速器,使系统具有较大的调速范围和输出转矩,充分发挥驱动电机的调速特性,消除了电机输出转矩和功率受到车轮尺寸的影响。设计中主要应考虑解决齿轮的工作噪声和润滑问题,其非簧载质量也比直接驱动式电动轮电驱动系统的大,对电机及系统内部的结构方案设计要求更高。图1为轮边减速器型电动轮示意图。图1轮边减速器型电动轮示意图。3转向差速控制研究轮边驱动系统没有传统的减速机构和机械式差速器,因而在转向时需考虑对两个轮边电机的转速和转矩进行重新分配来实现差速控制,从而减少汽车转向时轮胎的磨损和滑移,提高