1 / 3
文档名称:

常用逻辑用语知识点总结.doc

格式:doc   大小:98KB   页数:3页
下载后只包含 1 个 DOC 格式的文档,没有任何的图纸或源代码,查看文件列表

如果您已付费下载过本站文档,您可以点这里二次下载

分享

预览

常用逻辑用语知识点总结.doc

上传人:pk5235 2020/1/18 文件大小:98 KB

下载得到文件列表

常用逻辑用语知识点总结.doc

文档介绍

文档介绍:.:..常用逻辑用语一、命题1、命题的概念在数学中用语言、符号或式子表达的,,、四种命题及其关系(1)、四种命题命题表述形式原命题若p,则q逆命题若q,则p否命题若p则q逆否命题若q则p(2)、四种命题间的逆否关系(3)、四种命题的真假关系**两个命题互为逆否命题,它们有相同的真假性;*两个命题为互逆命题或互否命题,、充分条件与必要条件1、⇒q,则p是q的充分条件,⇒q,q⇒p,、“若则”为真,记为,如果“若则”为假,,则是的充分条件,:(1)定义法:①p是q的充分不必要条件②p是q的必要不充分条件③p是q的充要条件④ p是q的既不充分也不必要条件(2)集合法:设P={p},Q={q},①若PQ,则p是q的充分不必要条件,q是p的必要不充分条件.②若P=Q,则p是q的充要条件(q也是p的充要条件).③若PQ且QP,则p是q的既不充分也不必要条件.(3)逆否命题法:①q是p的充分不必要条件p是q的充分不必要条件②q是p的必要不充分条件p是q的充分不必要条件③q是p的充分要条件p是q的充要条件④q是p的既不充分又不必要条件p是q的既不充分又不必要条件三、简单的逻辑联结词(1)命题中的“且”“或”“非”叫做逻辑联结词.①用联结词“且”联结命题p和命题q,记作p∧q,读作“p且q”.②用联结词“或”联结命题p和命题q,记作p∨q,读作“p或q”.③对一个命题p全盘否定,就得到一个新命题,记作¬p,读作“非p”或“p的否定”.(2)简单复合命题的真值表:pqp∧qp∨q¬p真真真真假假真假真真真假假真假假假假假真*p∧q:p、q有一假为假,*p∨q:一真为真,*p与¬p:、量词1、全称量词与存在量词(1)常见的全称量词有:“任意一个”“一切”“每一个”“任给”“所有的”等.(2)常见的存在量词有:“存在一个”“至少有一个”“有些”“有一个”“某个”“有的”等.(3)全称量词

最近更新