1 / 19
文档名称:

等差数列性质.doc

格式:doc   大小:300KB   页数:19页
下载后只包含 1 个 DOC 格式的文档,没有任何的图纸或源代码,查看文件列表

如果您已付费下载过本站文档,您可以点这里二次下载

分享

预览

等差数列性质.doc

上传人:iris028 2020/2/5 文件大小:300 KB

下载得到文件列表

等差数列性质.doc

文档介绍

文档介绍:等差数列的性质及习题训练一、等差数列的性质知识点::(d为常数)();:, 首项:,公差:d,末项:推广:.   从而;(1)如果,,成等差数列,:或(2)等差中项::(其中A、B是常数,所以当d≠0时,Sn是关于n的二次式且常数项为0)特别地,当项数为奇数时,是项数为2n+1的等差数列的中间项(项数为奇数的等差数列的各项和等于项数乘以中间项)(1)定义法:若或(常数)是等差数列.(2)等差中项:数列是等差数列.⑶数列是等差数列(其中是常数)。(4)数列是等差数列,(其中A、B是常数)。:若或(常数):(1)等差数列的通项公式及前和公式中,涉及到5个元素:、、、及,其中、称作为基本元素。只要已知这5个元素中的任意3个,便可求出其余2个,即知3求2。(2)设项技巧:①一般可设通项②奇数个数成等差,可设为…,…(公差为);③偶数个数成等差,可设为…,,…(注意;公差为2)8..等差数列的性质:(1)当公差时,等差数列的通项公式是关于的一次函数,且斜率为公差;前和是关于的二次函数且常数项为0.(2)若公差,则为递增等差数列,若公差,则为递减等差数列,若公差,则为常数列。(3)当时,则有,特别地,当时,:,(4)若、为等差数列,则都为等差数列(5)若{}是等差数列,则,…也成等差数列(6)数列为等差数列,每隔k(k)项取出一项()仍为等差数列(7)设数列是等差数列,d为公差,是奇数项的和,是偶数项项的和,,2、当项数为奇数时,则(其中是项数为2n+1的等差数列的中间项).(8)、的前和分别为、,且,则.(9)等差数列的前n项和,前m项和,则前m+n项和(10)求的最值法一:因等差数列前项和是关于的二次函数,故可转化为求二次函数的最值,但要注意数列的特殊性。法二:(1)“首正”的递减等差数列中,前项和的最大值是所有非负项之和即当由可得达到最大值时的值.(2)“首负”的递增等差数列中,前项和的最小值是所有非正项之和。:直接利用二次函数的对称性:由于等差数列前n项和的图像是过原点的二次函数,故n取离二次函数对称轴最近的整数时,取最大值(或最小值)。若Sp=Sq则其对称轴为注意:解决等差数列问题时,通常考虑两类方法:①基本量法:即运用条件转化为关于和的方程;②巧妙运用等差数列的性质,一般地运用性质可以化繁为简,(附有详细解答)(共26小题){an}中,a3=9,a9=3,则公差d的值为( ) .﹣1         {an}的通项公式是an=2n+5,则此数列是( ) ,,公差为5的等差数列 ,