1 / 77
文档名称:

蒙特卡罗模拟方法课件.ppt

格式:ppt   页数:77页
下载后只包含 1 个 PPT 格式的文档,没有任何的图纸或源代码,查看文件列表

如果您已付费下载过本站文档,您可以点这里二次下载

分享

预览

蒙特卡罗模拟方法课件.ppt

上传人:分享精品 2016/2/19 文件大小:0 KB

下载得到文件列表

蒙特卡罗模拟方法课件.ppt

相关文档

文档介绍

文档介绍:蒙特卡罗模拟方法报告人:杨林吴颖科目:项目风险管理任课教师:尹志军蒙特卡罗模拟方法?一、蒙特卡罗方法概述?二、蒙特卡罗方法模型?三、蒙特卡罗方法的优缺点及其适用范围?四、相关案例分析及软件操作?五、问题及相关答案Monte Carlo方法的发展历史?早在17世纪,人们就知道用事件发生的“频率”来决定事件的“概率”。从方法特征的角度来说可以一直追溯到18世纪后半叶的蒲丰(Buffon)随机投针试验,即著名的蒲丰问题。1707-1788?1777年,古稀之年的蒲丰在家中请来好些客人玩投针游戏(针长是线距之半),他事先没有给客人讲与π有关的事。客人们虽然不知道主人的用意,但是都参加了游戏。他们共投针2212次,其中704次相交。蒲丰说,2212/704=,这就是π值。这着实让人们惊喜不已。?设针投到地面上的位置可以用一组参数(x,θ)来描述,x为针中心的坐标,θ为针与平行线的夹角,如图所示。?任意投针,就是意味着x与θ都是任意取的,但x的范围限于[0,a],夹角θ的范围限于[0,π]。在此情况下,针与平行线相交的数学条件是针在平行线间的位置?sin??lx??????其他当,0sin,1),(??lxxs???NiiiNxsNs1),(1?aladxddxdfxfxsPl????????2)()(),(sin0021???????NsalaPl22????一些人进行了实验,其结果列于下表:实验者年份投计次数π的实验值沃尔弗(Wolf)(Smith)(Fox)(Lazzarini),由于电子计算机的出现,利用电子计算机可以实现大量的随机抽样的试验,使得用随机试验方法解决实际问题才有了可能。其中作为当时的代表性工作便是在第二次世界大战期间,为解决原子弹研制工作中,裂变物质的中子随机扩散问题,(Von Neumann)和乌拉姆(Ulam)等提出蒙特卡罗模拟方法。由于当时工作是保密的,就给这种方法起了一个代号叫蒙特卡罗,即摩纳哥的一个赌城的名字。用赌城的名字作为随机模拟的名称,既反映了该方法的部分内涵,又易记忆,因而很快就得到人们的普遍接受。蒙特卡罗方法的基本思想?蒙特卡罗方法又称计算机随机模拟方法。它是以概率统计理论为基础的一种方法。?由蒲丰试验可以看出,当所求问题的解是某个事件的概率,或者是某个随机变量的数学期望,或者是与概率、数学期望有关的量时,通过某种试验的方法,得出该事件发生的频率,或者该随机变量若干个具体观察值的算术平均值,通过它得到问题的解。这就是蒙特卡罗方法的基本思想。因此,可以通俗地说,蒙特卡罗方法是用随机试验的方法计算积分,即将所要计算的积分看作服从某种分布密度函数f(r)的随机变量g(r)的数学期望通过某种试验,得到N个观察值r1,r2,…,rN(用概率语言来说,从分布密度函数f(r)中抽取N个子样r1,r2,…,rN,),将相应的N个随机变量的值g(r1),g(r2),…,g(rN)的算术平均值作为积分的估计值(近似值)。???NiiNrgNg1)(1?????0)()(drrfrgg