1 / 7
文档名称:

不等式选讲知识点.doc

格式:doc   大小:313KB   页数:7页
下载后只包含 1 个 DOC 格式的文档,没有任何的图纸或源代码,查看文件列表

如果您已付费下载过本站文档,您可以点这里二次下载

分享

预览

不等式选讲知识点.doc

上传人:非学无以广才 2020/3/19 文件大小:313 KB

下载得到文件列表

不等式选讲知识点.doc

相关文档

文档介绍

文档介绍:不等式选讲[知识点复习]一、不等式的基本性质①(对称性)②(传递性)③(可加性)(同向可加性)(异向可减性)④(可积性)⑤(同向正数可乘性)(异向正数可除性)⑥(平方法则)⑦(开方法则)⑧(倒数法则)二、几个重要不等式①,(当且仅当时取号).变形公式:②(基本不等式),(当且仅当时取到等号).变形公式:用基本不等式求最值时(积定和最小,和定积最大),要注意满足三个条件“一正、二定、三相等”.③(三个正数的算术—几何平均不等式)(当且仅当时取到等号).④(当且仅当时取到等号).⑤(当且仅当时取到等号).⑥(当仅当a=b时取等号)(当仅当a=b时取等号)⑦其中规律:小于1同加则变大,大于1同加则变小.⑧⑨绝对值三角不等式三、几个著名不等式①平均不等式:,(当且仅当时取号).(即调和平均几何平均算术平均平方平均).变形公式:②幂平均不等式:③二维形式的三角不等式:④二维形式的柯西不等式:当且仅当时,等号成立.⑤三维形式的柯西不等式:⑥一般形式的柯西不等式:⑦向量形式的柯西不等式:设是两个向量,则当且仅当是零向量,或存在实数,使时,等号成立.⑧排序不等式(排序原理):,则(反序和乱序和顺序和)当且仅当或时,:如果a,b是实数,则|a+b|≤|a|+|b|,当且仅当ab≥0时,等号成立。注:(1)绝对值三角不等式的向量形式及几何意义:当,不共线时,|+|≤||+||,它的几何意义就是三角形的两边之和大于第三边。(2)不等式|a|-|b|≤|a±b|≤|a|+|b|中“=”成立的条件分别是:不等式|a|-|b|≤|a+b|≤|a|+|b|,在侧“=”成立的条件是ab≥0,左侧“=”成立的条件是ab≤0且|a|≥|b|;不等式|a|-|b|≤|a-b|≤|a|+|b|,右侧“=”成立的条件是ab≤0,左侧“=”成立的条件是ab≥0且|a|≥|b|。定理2:如果a,b,c是实数,那么|a-c|≤|a-b|+|b-c|,当且仅当(a-b)(b-c)时,等号成立。(1)含绝对值的不等式|x|<a与|x|>a的解集不等式a>0a=0a<0|x|<a{x|-a<x<a}|x|>a{x|x>a或x<-a}{x|x∈R且x≠0}R注:|x|以及|x-a|±|x-b|表示的几何意义(|x|表示数轴上的点x到原点的距离;|x-a|±|x-b|)表示数轴上的点x到点a,b的距离之和(差)(2)|ax+b|≤c(c>0)和|ax+b|≥c(c>0)型不等式的解法①|ax+b|≤c-c≤ax+b≤c;②|ax+b|≥cax+b≥c或ax+b≤-c.(3)|x-a|+|x-b|≥c(c>0)和|x-a|+|x-b|≤c(c>0)型不等式的解法方法一:利用绝对值不等式的几何意义求解,体现了数形结合的思想;方法二:利用“零点分段法”求解,体现了分类讨论的思想;方法三:经过构造函数,利用函数的图象求解,体现了函数与方程的思想。六、不等式证明的几种常见方法常见方法有:比较法(作差,作商法)、综合法、分析法;(1)作差比较法①理论依据:a>ba-b>0;a<ba-b<0.②证明步骤:作差→变形→判断符号→得出结论。注:作差比较法的实质是把两个数或式子的大小判断问题转化为一个数(或式子)与0的大小关系