1 / 16
文档名称:

初中数学中考知识点汇总.docx

格式:docx   大小:126KB   页数:16页
下载后只包含 1 个 DOCX 格式的文档,没有任何的图纸或源代码,查看文件列表

如果您已付费下载过本站文档,您可以点这里二次下载

分享

预览

初中数学中考知识点汇总.docx

上传人:hytkxy 2020/3/31 文件大小:126 KB

下载得到文件列表

初中数学中考知识点汇总.docx

相关文档

文档介绍

文档介绍:初中数学知识点汇总第一章 实数★重点★ 实数的有关概念及性质,实数的运算☆内容提要☆一、:正整数整数0有理数(有限或无限循环性数)负整数分数正分数实数负分数无理数(无限不循环小数)正无理数负无理数说明:“分类”的原则: 1)相称(不重、不漏)2):正实数与零的统称。 (表为:x≥0)常见的非负数有:(a为一切实数)│a│(a≥0)性质:若干个非负数的和为 0,则每个非负担数均为 0。: ①定义及表示法②性质:≠1/a(a≠±1); 中,a≠0;<a<1时1/a>1;a>1时,1/a<1;。: ①定义及表示法②性质:≠0时,a≠-a; 与-a在数轴上的位置 ;,商为-1。:①定义(“三要素”)②作用:;;。、偶数、质数、合数(正整数—自然数)初中数学知识点 第1页(共15页)定义及表示:奇数:2n-1偶数:2n(n为自然数):①定义(两种) :代数定义:a(a≥0)a│=-a(a<0)几何定义:数 a的绝对值顶的几何意义是实数 a在数轴上所对应的点到原点的距离。②│a│≥0,符号“││”是“非负数”的标志 ;③数a的绝对值只有一个 ;④处理任何类型的题目,只要其中有“││”出现,其关键一步是去掉“││”符号。二、(加、减、乘、除、乘方、开方)(五个—加法[乘法]交换律、结合律;[乘法对加法的]分配律): ;B.(同级运算)从“左”到“右”(如5÷1×5);C.(有括号时)由“小”到“中”到“大” 。5三、应用举例(略)附:典型例题1. 已知:a、b、x在数轴上的位置如下图, 求证:│x-a│+│x-b│=b- x b已知:a-b=-2且ab<0,(a≠0,b≠0),判断a、b的符号。第二章代数式★重点★代数式的有关概念及性质,代数式的运算☆内容提要☆一、重要概念分类:整式单项式有理式多项式分式代数式无理式代数式与有理式用运算符号把数或表示数的字母连结而成的式子,叫做代数式。单独的一个数或字母也是代数式。整式和分式统称为有理式。整式和分式含有加、减、乘、除、乘方运算的代数式叫做有理式。没有除法运算或虽有除法运算但除式中不含有字母的有理式叫做整式。有除法运算并且除式中含有字母的有理式叫做分式。单项式与多项式初中数学知识点 第2页(共15页)没有加减运算的整式叫做单项式。 (数字与字母的积—包括单独的一个数或字母)几个单项式的和,叫做多项式。说明:①根据除式中有否字母,将整式和分式区别开;根据整式中有否加减运算,把单项式、多项式区分开。②进行代数式分类时,是以所给的代数式为对象,而非以变形后的代数式为对象。划分代数式类别时,是从外形来看。如,2x =x, x2=│x│等。x系数与指数区别与联系:①从位置上看 ;②从表示的意义上看同类项及其合并条件:①字母相同 ;②相同字母的指数相同合并依据:乘法分配律根式表示方根的代数式叫做根式。含有关于字母开方运算的代数式叫做无理式。注意:①从外形上判断 ;②区别: 3、 7是根式,但不是无理式(是无理数) 。⑴正数a的正的平方根( a[a≥0—与“平方根”的区别 ]);⑵算术平方根与绝对值① 联系:都是非负数, a2=│a│②区别:│a│中,a为一切实数; a中,a为非负数。同类二次根式、最简二次根式、分母有理化化为最简二次根式以后,被开方数相同的二次根式叫做同类二次根式。满足条件:①被开方数的因数是整数,因式是整式;②被开方数中不含有开得尽方的因数或因式。把分母中的根号划去叫做分母有理化。指数⑴a·a⋯a=(an—幂,乘方运算)个a>0时,an>0;②a<0时,an>0(n是偶数),an<0(n是奇数)⑵零指数:a0=1(a≠0)负整指数:ap=1/ap(a≠0,p是正整数)二、运算定律、性质、、减、乘、除、乘方、开方法则初中数学知识点 第3页(共15页)⑴基本性质: b=bm(m≠0)a am⑵符号法则:b b ba a a⑶繁分式:①定义 ;②化简方法(两种)(去括号、添括号法则):①am·an=amn;②am÷an=amn;③(am)n=amn;④(ab)n=annananb;⑤(b)bn技巧:(b)p(a):⑴单×单;⑵单×多;⑶多×多。:(正、逆用)(ab)2a22abb2(a+b)(a-b)=a2b2(a±b)(a2abb2)=a3