文档介绍:教材解读:《圆柱体积》这一课是在学习了长方体和立方体的基础上,进入了小学里学习立体图形的最后阶段这个单元知识的综合性和对学生的要求都比较高。化归和类比是常用的思想方法,学好这部分知识,为今后学习复杂的几何知识打下扎实的基础,是后继学习的前提。教是为了不教,教是交给学生方法智慧,让学生从学会变成会学,基于此我们确定了如下的单任务。(1)单任务引导学生学会用迁移类推的方法,用转化的思想探究圆柱体体积的计算公式(2)目标1、经历并理解圆柱体积公式的推导过程掌握圆柱的体积公式并能应用公式正确地解决实际问题。2、通过观察、猜测、操作、分析、比较、综合建立初步的空间观念并体会知识间相互“转化”的思想方法。3、让学生感受探索数学奥秘的乐趣培养学生学习数学的积极情感。(3)板块构建(一)旧知搭桥、激活转化思想先用课件引导再现,1、怎样计算长、正方体的体积唤醒学生对体积和体积计算方法的记忆:长方体和正方体的体积底面积x高2、学习计算圆的面积时是怎样把圆变换成已学过的图形、用课件再现圆转换成近似长方形以及圆面积公式推导过程,激活原先“化曲为直”的极限思想和“转化”的思想方法记忆储存。(加入课件演示)进而引发学生大胆猜想圆柱的体积与什么因素有关,公式可能是怎样的呢?这样通过设疑既指明观察方向营造探究新知识的氛围,又自然而然地进入了下一个环节:(二)合作探究,推导体积公式在此基出上让学生大胆猜测,能不能把圆柱转化成我们学过的立体图形来计算它的体积,学生就会利用旧知和直观图猜想:可将圆柱体切拼成长方体。然后,利用实物和课件演示引导学生观察沿着圆柱底面直径把圆柱切开可以得到大小相同的16块。演示给学生,并及时渗透“化曲为直”的极限思想和“转化”的思想,这里用较多的篇幅讲解切拼的过程便于学生理解和感受转化的过程和极限思想然后推导圆柱体积的计算公式新课标指出,学生获得知识,必须建立在自己思考的基础上,通过自主探究的方式进行,六年级学生已具有一定的知识储备和逻辑思维及探究能力,因此,充分发挥学生的主观能动性,这节课给学生足够的时间和空间经历观察、实验、猜测、计算、推理和验证的过程,教师应避免过细地进行方法引领。因此设计了如下的探究学习提示:转化成的形体的体积公式是怎样的,转化后的形体与圆柱体有怎样的联系。。在学生汇报过程中,注意规范学生的语言表达和逻辑推理,培养学生的语言表达和逻辑思维能力,从而促进学生对转化思想认识的提升,体验数学的逻辑美。通过学生的合作学习,实现生生之间,师生之间思维的碰撞,这部分教学设计意图根据教材特点学生的认知过程充分调动学生的学习热情激发求知欲望调动学生的各种感官完成从演示——观察——操作——比较——归纳——推理的认识过程让知识在观察、操作、比较中内化实现感性到理性由具体到抽象这种教学方法符合学生的认知规律有助于突破难点、化解难点。三、理解应用,拓展延伸公式得出后,让学生内化对知识的理解,明确要通过练习巩固新知加深对新知识的理解把所学知识进一步转化为能力在练习中发展智力培养优良的思维品质和学习习惯。变式练习在掌握基础知识的前提下培养思维的灵活性同时深化教学内容防止思维定势。动手实践一方面培养了学生解决实际问题的能力