文档介绍:导数压轴题型归类总结目录一、导数单调性、极值、最值的直接应用(1)二、交点与根的分布(23)三、不等式证明(31)(一)作差证明不等式(二)变形构造函数证明不等式(三)替换构造不等式证明不等式四、不等式恒成立求字母围(51)(一)恒成立之最值的直接应用(二)恒成立之分离常数(三)恒成立之讨论字母围五、函数与导数性质的综合运用(70)六、导数应用题(84)七、导数结合三角函数(85)书中常用结论⑴,变形即为,其几何意义为上的的点与原点连线斜率小于1.⑵⑶⑷.一、导数单调性、极值、最值的直接应用(切线)设函数.(1)当时,求函数在区间上的最小值;(2)当时,曲线在点处的切线为,与轴交于点求证:.解:(1)时,,由,:01-0+0↘极小值↗0所以当时,有最小值.(2)证明:,得,∴∵,∴,∵,∴所以.(2009理20,极值比较讨论)已知函数其中⑴当时,求曲线处的切线的斜率;⑵当时,:本小题主要考查导数的几何意义、导数的运算、利用导数研究函数的单调性与极值等基础知识,考查运算能力及分类讨论的思想方法。⑴⑵:①>,则<.当变化时,的变化情况如下表:+0—0+↗极大值↘极小值↗②<,则>,当变化时,的变化情况如下表:+0—0+↗极大值↘极小值↗已知函数⑴设两曲线有公共点,且在公共点处的切线相同,若,试建立关于的函数关系式,并求的最大值;⑵若在(0,4)上为单调函数,求的取值围。(最值,按区间端点讨论)已知函数f(x)=lnx-.(1)当a>0时,判断f(x)在定义域上的单调性;(2)若f(x)在[1,e]上的最小值为,:(1)由题得f(x)的定义域为(0,+∞),且f′(x)=+=.∵a>0,∴f′(x)>0,故f(x)在(0,+∞)上是单调递增函数.(2)由(1)可知:f′(x)=,①若a≥-1,则x+a≥0,即f′(x)≥0在[1,e]上恒成立,此时f(x)在[1,e]上为增函数,∴f(x)min=f(1)=-a=,∴a=-(舍去). ②若a≤-e,则x+a≤0,即f′(x)≤0在[1,e]上恒成立,此时f(x)在[1,e]上为减函数,∴f(x)min=f(e)=1-=,∴a=-(舍去).③若-e<a<-1,令f′(x)=0,得x=-<x<-a时,f′(x)<0,∴f(x)在(1,-a)上为减函数;当-a<x<e时,f′(x)>0,∴f(x)在(-a,e)上为增函数,∴f(x)min=f(-a)=ln(-a)+1=⇒a=-.综上可知:a=-.(最值直接应用)已知函数,其中.(Ⅰ)若是的极值点,求的值;(Ⅱ)求的单调区间;(Ⅲ)若在上的最大值是,:(Ⅰ).依题意,令,,时,符合题意.(Ⅱ)解:①当时,.故的单调增区间是;单调减区间是.②当时,令,得,,与的情况如下:↘↗↘所以,的单调增区间是;,,,与的情况如下:↘↗↘所以,的单调增区间是;单调减区间是和.③当时,的单调增区间是;,当时,的增区间是,减区间是;当时,的增区间是,减区间是和;当时,的减区间是;当时,的增区间是;减区间是和.(Ⅲ)由(Ⅱ)知时,在上单调递增,由,,在的最大值是,由,,在单调递减,可得在上的最大值是,,在上的最大值是时,的取值围是.(2010理数18)已知函数=ln(1+)-+(≥0).(Ⅰ)当=2时,求曲线=在点(1,(1))处的切线方程;(Ⅱ):(I)当时,,由于,,所以曲线在点处的切线方程为即(II),.当时,.所以,在区间上,;在区间上,.故得单调递增区间是,,由,得,所以,在区间和上,;在区间上,故得单调递增区间是和,,,,得,.所以没在区间和上,;在区间上,故得单调递增区间是和,单调递减区间是(2010文21,单调性)已知函数 ⑴当时,求曲线在点处的切线方程; ⑵当时,:⑴⑵因为,所以,,令(是一道设计巧妙的好题,同时用到e底指、对数,需要构造函数,证存在且唯一时结合零点存在性定理不好想,⑴⑵联系紧密)已知函数⑴若函数φ(x)=f(x)-,求函数φ(x)的单调区间;⑵设直线l为函数f(x)的图象上一点A(x0,f(x0))处的切线,证明:在区间(1,+∞)上存在唯一的x0,使得直线l与曲线y=g(x):(Ⅰ),.∵且,∴∴函数的单调递增区间为.(Ⅱ)∵,∴,∴切线的方程为,即,①设直线与曲线相切于点,