文档介绍:等厚干涉——牛顿环等厚干涉是薄膜干涉的一种。薄膜层的上下表面有一很小的倾角是,从光源发出的光经上下表面反射后在上表面附近相遇时产生干涉,并且厚度相同的地方形成同一干涉条纹,这种干涉就叫等厚干涉。其中牛顿环是等厚干涉的一个最典型的例子,最早为牛顿所发现,但由于他主微粒子学说而并未能对他做出正确的解释。光的等厚干涉原理在生产实践中育有广泛的应用,它可用于检测透镜的曲率,测量光波波长,精确地测量微笑长度、厚度和角度,检验物体表面的光洁度、平整度等。实验目的(1)用牛顿环观察和分析等厚干涉现象;(2)学习利用干涉现象测量透镜的曲率半径;实验仪器读数显微镜钠光灯牛顿环仪实验原理牛顿环装置是由一块曲率半径较大的平凸面放在一块光学玻璃平板(平镜)上构成的,如图。平凸透镜的凸面与玻璃平板之间的空气层厚度从中心到边缘逐渐增加,若以平行单光垂直照射到牛顿环上,则经空气层上、下表面反射的两光束存在光程差,他们在平凸透镜的凸面相遇后,将发生干涉。从透镜上看到的干涉花样是以玻璃接触点为中心的一系列明暗相间的圆环,称为牛顿环。同一干涉环上各处的空气层厚度是相同的,因此他属于等厚干涉。图2图3由图2可见,若设透镜的曲率半径为R,与接触点O相距为r处空气层的厚度为d,其几何关系式为由于,可以略去d2得(1)光线应是垂直入射的,计算光程差时还要考虑光波在平玻璃上反射会有半波损失,,从而带来的附加程差,所以总光程差为(2)所以暗环的条件是(3)其中为干涉暗条纹的级数。综合(1)(2)(3)式可得第可k级暗环的半径为(4)由式(4)可知,如果单色光源的波长λ已知,测出第m级的暗环半径rm,,即可得出平图透镜的曲率半径R;反之,如果R已知,测出rm后,就可计算出入射单色光波的波长λ。但是用此测量关系式往往误差很大,原因在于凸面和平面不可能是理想的点接触;接触压力会引起局部形变,使接触处成为一个圆形平面,干涉环中心为一暗斑。或者空气间隙层有了灰尘,附加了光程差,干涉环中心为一亮(或暗)斑,均无法确定环的几何中心。实际测量时,我们可以通过测量距中心较远的两个暗环半径rm和rn的平方差来计算曲率半径R。因为两式相减可得所以有或由上式可知,只要测出与(分别为第m与第n条暗纹的直径)的值,就能算出R或λ。这样就可避免实验中条纹级数难以确定的困难,利用后以计算式还可克服确定条纹中心位置的困难。实验容调整牛顿环借助日光灯灯光,用眼睛直接观察,均匀调节仪器的3个螺丝直至干涉条纹为圆环形且位于透镜的中心。然后将干涉条纹放在显微镜镜筒的正下方。(1)接通汞灯电源。(2)将牛顿环装置放置在读数显微镜镜筒下,镜筒置于读数标尺中央月5cm处。(3)待汞灯正常发光后,调节读数显微镜下底座平台高度(底座可升降),使玻璃片正对汞灯窗口,并且同高。(4)在目镜中观察从空气层反射回来的光,整个视场应较亮,颜色呈汞光的兰紫色,如果看不到光斑,可适当调节玻璃片的倾斜度(一般实验室事先已调节好,不可随意调节)及平台高度,直至看到反射光斑,并均匀照亮视场。(5)调节目镜,在目镜中看到清晰的十字准线的像。(6)转动物镜调节手轮,调节显微镜镜筒与牛顿环装置之间的距离。先将镜筒下降,使玻璃片接近牛顿环装置但不能碰上,然后缓慢上升,直至在目镜中看到清晰的十字准线和牛顿环像。~30环的直径(1)粗调仪器,移动牛顿环装