文档介绍:
6
3
R ,
n×m
P [ ]
×
P
n n x n m
(
)
3
R
3
R
–
Æ
§
3
R
a
|a|
|b|
(
b,
θ
)
(a, b)=|a||b| cos θ.
Æ
a
a
b
|a| = (a, a)
(a, b)
θ= os
(a, a)(b, b)
Æ
1.
R
a
b
V V
(a b),
,
a b ∈,
(1)
, V
(a, b)=(b, a)
1
a b c ∈,
(2)
λ, , V
(λa, b)=λ(a, b)(a + b, c)=(a, c)+(b, c)
a ∈,
(a a) ≥ 0,
a = 0(
(3)
V ,
).
(a b)
a
b
,
R
, V
(Euclid)
,
.
(1)
(2)
a b c ∈,
λ1,λ2 , , V
(λ1a + λ2b, c)=λ1(a, c)+λ2(b, c)
(a,λ1b + λ2c)=λ1(a, b)+λ2(a, c)
k m k m
( λiai, μjbj)= λiμj(ai, bj)
i=1 j=1 i=1 j=1
(1)
(2)
(a, 0)=0
0
(2)
(a b)
(1)
,
(a b)
V V , V
(3)
(a a)
,
(a b),
(a a)
V f , f ,
V
(a, b)=f(a, b)
Æ
R
V
2.
V V
2
(
–
):
(· ·)
V , V V
a
b,
|(a, b)|≤(a, a)(b, b)
a
b
,
λ
0 ≤(λa + b,λa + b)
=