文档介绍:欧氏几何的公理体系和我面
几何课本的历史演变
张英伯
(北京师范大学数学科学学院100875)
1、几何原本与几何基础
我们都知道,两千多年前,古希腊的数学家欧几里得写了一本一著名的书一一《原本》。在古往今来的浩瀚书海中,《原本》用各国文字出版的印数仅次于《圣经》而居世界第一位。我国最早的中译本是在明朝末年由外国传教士利玛窦与我国科学家徐光启翻译的,1607年出版,书名定为《几何原本》。此后,我国出版的各种译本都沿袭这一名称。
《几何原本》列出了五条公理与五条公设,并在各章的开头给出了一系列定义,然后根据这些定义,公理和公设推导出了465个数学命题,(按照日前通行的希思英译本《Euclid' s Elexnents》13卷计算,该书的中译本于1990年出版),其系统之严谨,推理之严密,令人叹为观止。《几何原本》的内容涉及初等数学的各个领域,包括代数,数论,平面几何,命_体几何,甚至现代极限概念的雏形,但各部分的表述大都是从图形出发的。第一卷讲直线形,包括点、线、面、角的概念,三角形,两条直线的平行与垂直,勾股定理等;第二卷讲代数恒等式,如两项和的平方,黄金分割;第三卷讨论圆、弦、切线等与圆有关的图形;第四卷的内容是圆的内接和外切三角形,正方形,内接正多边形(5、10、15边)的作图;第五卷是比例论,取材于欧多克索斯(Eudoxus)的公理法,使之适用于一切可公度和不可公度的量;第六卷将比例论应用于平面图形,研究相似形;第八、九卷是初等数论,其中给出了辗转相除法,证明了素数有无穷多;第十卷篇幅最大,占全书的四分之一,主要讨论无理量,可以看作是现代极限概念的雏形;第十一卷讨论空间的直线与平面;第十二卷证明了圆面积的比等于直径的平方比,球体积的比等于直径的立方比,但没有给出比例常数;第十三卷详细研究了五种正多面体。
欧几里得《几何原本》中的内容己在现代中等教育中分成了若干部分,分别归入平面几何,代数,三角,立体几何。初中平面几何的内容主要取材于《几何原本》的前六章,大致可以概括为点、线、面角的概念,三角形,两条直线的位置关系(包括平行,垂直),四边形,圆,相似形,求图形的面积这样几个部分。在全书的开头列出的五个公理和五个公设如下。公理适用于数学的各个领域;
(1)等于同量的量彼此相等。
( 2)等量加等量,其和相等。
(3)等量减等量,其差相等。
( 4)彼此能重合的物体是全等的。
( 5)整体大于部分。
公设适用于几何部分;
(1)由任意一点到任意(另)一点可作直线。
( 2)一条有限直线可以继续延比
(3)以任意点为(圆)心及任意距离(为半径)可以画圆。
( 4)凡直角都相等。
( 5)同平面内一条直线和另外两条直线相交,若在某一侧的两个内角的和小于一直角,则这两直线经无限延长后在这一侧相交。
当然,按照现代数学的公理化体系去衡量,《几何原本》的公理体系不是很完备,比如对点、线、面等原始概念的定义不甚清晰;关联,顺序,运动,连续性等方面的公理还有待补充;个别公理欠独立性一些命题的证明基于公理4的几何直观,即;彼此能重合的物体是全等的。也就是说,一个平面图形可以不改变形状和大小从一个位置移动到另一个位置。这实际上是不加定义默认了平面的刚体运动。后者在现代数学中的严格定义是平面到自身的