文档介绍:直线平面简单几何体(B)教材分析
本章共分四大节11小节,教学时间约需36课时,具体分配如下(仅供参考):
空间的直线和平面
、平面与平面平行约2课时
空间向量
夹角和距离
简单多面体和球
:多面体欧拉定理的发现约2课时
小结与复习约3课时
一、内容与要求
,平面的基本性质共4个知识点:平面的表示法、平面的基本性质、公理的推论、空间图形在平面上的表示方法这一小节是整章的基础通过平面基本性质及其推论的学面的直观认识上升到理性认识教师应该认识到培养学生的空间想象力主要是通过对图形性质的学习,使学生对图形的直观认识上升到理性认识,建立空间图形性质的正确概念,这样才能学好立体几何
为了形成学生的空间观念,这一小节通过观察太阳(平行)光线照射物体形成影子的性质来学行射影的性质,这样就可正确地指导学生画空间图形
这小节教学要求是,掌握平面的基本性质,直观了解空间图形在平面上的表示方法,会用斜二测画法画水平放置的平面图形的直观图和长方体、正方体的直观图
,平行直线、异面直线以平行公理和平面基本性质为基础进一步学行线的传递性推广到空间并引出平移概念,了解了平移的初步性质在这一节还由直线平行的性质学习异面直线及其夹角的概念
要求学生正确掌握空间平行直线性质和异面直线及其夹角的概念,这样就为学生学习向量和空间图形的性质打下了基础
,直线与平面和平面与平面平行,直线与平面、平面与平面平行特征性质这也可看作平行公理和平行线传递性质的推广直线与平面、平面与平面平行判定的依据是线、线平行这些平行关系有着本质上的联系平行平面的传递性在练习中出现,学生做完练习,教师可加以总结让学生掌握这一性质
通过教学要求学生掌握线、面和面、面平行的判定与性质这两个平行关系是下一大节学习共面向量的基础
前面3节主要讨论空间的平行关系,其中平行线的传递性和平行平面的性质是这三小节的重点
:直线和平面垂直及正射影和三垂线定理空间除平移和平行射影的性质外,第二个重要性质就是空间的镜面对称直线与平面的垂直的特征性质是研究空间对称性的基础细心分析直线和平面判定定理的证明过程就可以看到,证明的过程就是由平面的轴对称转换为空间的镜面对称的过程这一小节要特别重视判定定理的教学,要向学生指出定理证明过程的本质三垂线定理是由直线和平面垂直判定定理得出的一个最重要的空间图形的性质,在传统几可学教育中这个定理占有极重要的地位,在这里,我们只重视概念的教学,减弱围绕三垂线定理的解题训练这是因为我们有更有效的向量工具处理空间的垂直问题
这一小节的教学要求是,掌握直线和平面垂直的概念,掌握直线和平面垂直的判定定理,掌握三垂线定理及逆定理这里的“掌握”与9(A)的要求不同主要是理解定理的本质和直接应用不要进行大量的解题