文档介绍:高职生如何学好高等数学
王为洪
高等数学是高职院校的必修课,是各门功课的基础,其开设的目的是:让学生掌握高等数学的基本知识;培养学生辩证的思维意识和数学素养;提高学生高度的抽象思维能力、严密的逻辑推理能力及运用数学知识解决实际问题的能力;为专业课的学习打下必要的数学基础,并为学生继续学习、终生学习和可持续发展奠基。
总体上讲,数学的学习可以分成两个层面:一是基本知识的把握,二是知识的深化。第一个层面,是每个学习高等数学的同学都必须做好的;第二个层面,对于希望把高等数学学得好一点,尤其是希望专科升本科或将来希望参加全国大学生数学建模竞赛的同学,显然是很需要的。
现在我谈谈具体的学习方法:
。
高等数学中涉及到的知识点有定义、定理和公式。
1)定义需要了解些什么?
a)首先,我们要从文字上把握定义的基本含义是什么。
b)其次,了解定义涉及到哪些知识(已经学过的),比如,在学习多元函数微积分时,谈到“区域”,这个定义和中学里学习过的区间有密切的联系,也和集合有密切的关系。我们可以在对比中学习。既要分析相关概念的相同点或关联的地方,也要注意到不同点或差异的地方。
c)定义需要注意的事项,或定义涉及到的要素。如无穷小的定义,需要注意无穷小是一个变化的量(在变化过程中其极限为零),不要把它理解成一个很小的定数(定数中只有0有资格做无穷小)。
d)定义涉及到哪些性质?对这些性质的充分了解,往往可以帮助我们更好地把握定义的真正内涵。
2)定理。a),b),c)与定义注意的地方相同。
d)定理涉及的条件。这点很重要。很多同学没有注意到定理成立的条件,在解题中拿着定理到处用,结果往往得出错误的结论。例如,在求型极限时,有个等价无穷小替换定理,当分子或分母是和式的情况下,若作了部分替换,而不是整体替换,往往会导致错误的结果。
e)定理要想把握得好,要做一定数量的相关题目,这样才可以真正把握其内涵。如果要深入地了解定理,往往还要做一定数量的涉及到多个定理或公式的题目,需要在实践中领会。如果学了定理,却不能做题目,那么学的知识是死的,这样的知识是没有多少用处的。
建议同学们都能买一本高等数学习题集或专升本的辅导教材(比如中国石油大学出版社出版的《高等数学学习与考试指导》),这并不是引导同学们都去准备专升本,而是因为教材中往往有一些同步练习或单元测试,做一做,无疑会对学习高等数学有很大的帮助。
3)公式。
有的公式很简单,象导数公式,只要你对导数的定义理解清楚了,那么利用导数公式简直就是和套用乘法公式差不多。
但是有些公式就比较复杂,比如多元函数微积分中的高斯公式。这些公式与其说是公式,还不如说是定理,对于这样的公式,在学习的时候,我们可以参照上面介绍的定理的学习方法进行学习。
。
在这方面,除了做好以上 1. 中谈到的地方外,最好的办法莫过于做习题了。现在我们不妨就解题方面做一下介绍。
。
无论是学习初等数学还是高等数学,都离不开解题。但是事实上,很多同学感觉到做了很多题,效果并不佳,为什么呢?
我认为:
1)首先,要把教材上的题目认真做好。这些题目往往是专门为了消化和理解定义、定理与公式而设计的,这是属于打底子的题目,所以必须每道题目都过关。这些题目往往不是很难,但是在消化和理解基本知