文档介绍:第0章场论( FIELD )
目的:场论是描述物理流动的数学工具。
内容:介绍力学中常用的场论知识。
场: 具有物理量的空间。
流场:充满流体物理量的空间。
x
y
z
M(x,y,z)
物理量作为空间点位置和时间t 的函数,t 作为参变量。
流体力学中常见的物理量
density
temperature
pressure
stress
velocity
strain
向量场(函数)
标量场(函数)
张量场(函数)
field 1:1 func.
x
y
z
M(x,y,z)
r
o
space point
向量( vector ) :3个元素表示的既有大小又有方向的量,
标量、向量、张量
(1)概念:
标量(scalar):1个元素表示的只有大小没有方向的量,
二阶张量(tensor of 2nd order):9个元素表示的量。
n阶张量(tensor of nth order):3n个元素表示的量。
(2)场的几何描述
向量线的微分方程:由定义点的位置矢径r=xi+yj+zk的,
向量场的向量线:向量线上每一点处曲线与对应于该点的向量
=axi+ayj+azk相切
(c值不同对应不同等值面)
标量场的等值面: 时刻场中数值相同的点组成的曲面。表示标量场的分布。
的微分dr=dxi+dyj+dzk方向与的方向相同,得:
或
等值面
M
x
y
z
o
向量线
向量线族描述了向量在场中的分布情况。
向量线连续分布,一般互不相交。
(1) :Einstein求和符号:式子中成对出现的哑指标。
式中i, j 是自由指标,ij 可写作:
任意两个正交坐标轴单位向量的点积,用表示
(2) : Kronecker符号:
ijk中任意两个自由指标对换后,对应的分量值相差一个负号。
式中i,j是自由指标, 称为置换符号。
(3) : i(置换)符号:任意两个正交单位向量的叉积
置换符号ijk和符号之间有如下关系
(1)
(2)
(3)
(4)
(5)