文档介绍:概率论与数理统计第11讲
1
第七章参数估计
§1 点估计
2
统计推断问题可以分为两大类, 一类是估计问题, 一类是假设检验问题. 本章讨论总体参数的点估计和区间估计.设总体X的分布函数的形式为已知, 但它的一个或多个参数为未知, 借助于总体X的的一个样本来估计总体未知参数的值的问题称为参数的点估计问题.
3
例1 在某炸药厂, 一天中发生着火现象的次数X是一个随机变量, 假设它服从以l>0为参数的泊松分布, 参数l为未知, 现有以下样本值, 试估计参数l.
4
解由于X~p(l), 故有l=E(X). 我们自然想到用样本均值来估计总体的均值E(X). 现由已知数据计算得到
得到E(X)=.
5
点估计的一般提法为: 设总体X的分布函数F(x;q)的形式为已知, q是待估参数. X1,X2,...,Xn是X的一个样本, x1,x2,...,xn是相应的一个样本值. 点估计问题就是要构造一个
6
两种常用的构造估计量的方法:矩估计法最大似然估计法
7
(一)矩估计法设X为连续型随机变量, 其概率密度为f(x;q1,q2,...,qk), 或X为离散型随机变量, 其分布律为P{X=x}=p(x;q1,q2,...,qk), 其中q1,q2,...,qk为待估参数, X1,X2,...,Xn是来自X的样本. 假设总体X的前k阶矩
(其中RX是x的可能取值的范围)存在, 一般来说, 它们是的q1,q2,...,qk函数.
8
因为样本矩
依概率收敛于相应的总体矩ml(l=1,2,...,k), 样本矩的连续函数依概率收敛于相应的总体矩的连续函数. 因此就用样本矩作为相应的总体矩的估计量. 这种估计方法称为矩估计法.
9
矩估计法的具体做法为:设
这是一个包含k个未知参数q1,q2,...,qk的联立方程组. 一般可从中解出q1,q2,...,qk, 得到
10