1 / 3
文档名称:

HKMG来龙去脉.doc

格式:doc   大小:15KB   页数:3页
下载后只包含 1 个 DOC 格式的文档,没有任何的图纸或源代码,查看文件列表

如果您已付费下载过本站文档,您可以点这里二次下载

分享

预览

HKMG来龙去脉.doc

上传人:薇薇安 2021/6/21 文件大小:15 KB

下载得到文件列表

HKMG来龙去脉.doc

相关文档

文档介绍

文档介绍:HKMG来龙去脉
-K。
随着CMOS电路线宽的不断缩小,晶体管的一个关键指标:栅氧厚度也要不断缩小。以intel为例90nm时代实际应用的栅氧厚度最低达到了1.2nm,45nm时代更是需要低至1nm以下的栅氧厚度。ﻫ不过栅氧厚度是不能无限缩小的,因为薄到2nm以下的SiO2层不再是理想的绝缘体,会出现明显的隧穿泄漏,而且将随厚度减小指数级上升,1nm以下泄漏就会大到无法接受的程度。所以intel在45nm启用high-k。其他企业则将在32nm或28nm阶段启用high-k技术。ﻫhigh-k工艺就是使用高介电常数的物质替代SiO2作为栅介电层。intel采用的HfO2介电常数为25,相比SiO2的4高了6倍左右,所以同样电压同样电场强度,介电层厚度可以大6倍,这样就大大减小了栅泄漏。
2.为什么HKMG会联系在一起
HK就是high-K栅介电层技术,而MG指的是metal gate--金属栅极技术,两者本来没有必然的联系。不过使用high-k的晶体管栅电场可以更强,如果继续使用多晶硅栅极,栅极耗尽问题会更麻烦。另外栅介电层已经用了新材料,栅极同步改用新材料的难度也略小一些。所以两者联合是顺理成章的事情。
first和gate last
现在CMOS集成电路制造用的是叫“硅栅自对准”工艺。就是先形成栅介电层和栅电极,然后进行源漏极的离子掺杂。因为栅极结构阻挡了离子向沟道区的扩散,所以掺杂等于自动和硅栅对齐的。
这样的步骤还有后面的激活步骤,退火步骤都是高温步骤。这些工序都是必需的。金属栅极经过这样的步骤可能发生剧烈反应和变化,为解决这问题,就是在离子参杂等步骤中还是按硅栅来,高温步骤结束后再刻蚀掉多晶硅栅极,再用合适的金属填充。这就是gate-last的意思。这就多了几步重要步骤,特别是金属填充,这么小的尺度的孔隙进行填充效率很低,提高速度的话质量就很难控制。而且线宽越小越麻烦。
不过虽然gate-last代价很大,很长时间以来人们都认为是HKMG必须的。ibm则是继续研发,找到了不必在制造时付出gate-last的代价的方案。比如intel采用的栅介电材料是氧化铪,所以底界面层,HK层,顶界面层,金属栅极层次分明。而ibm采用的介电材料是硅酸铪----成分是硅,氧和铪三种元素,与周围的硅和氧化硅发生反应的话结果仍然是硅,氧化硅,硅酸铪,与特定的栅极材料匹配,高温时候仍然是热动力学稳定的。另外gate first所谓的MG,其实只是栅介电层上薄薄一层高熔点金属----gate first仍然需要多晶硅栅极来实现“硅栅自对准”的其他工序。
first与gate last各自的优缺点
gate last的栅极甚至部分栅介电层避开了高温步骤,所以材料选择非常宽松,可以考虑高性能的材料。而且gate last的HKMG不影响其他生产步骤,所以就性能而言,gate last将很理想。当然其代价也是很大的,步骤多而严苛,所以其成本将会较高。
gate first从根本上来说目的就是为了降低成本,所以其优点不言而喻。不过它的代价也如影随形---虽然节省了加工步骤,但是其技术难度反而更高。另外由于栅极和栅介质要经过高温步骤,所以材料选择和控制也有很大限制,性能也会受一些影响。
5.阈值控制