1 / 22
文档名称:

小升初-数学-几何-专题.docx

格式:docx   大小:1,447KB   页数:22页
下载后只包含 1 个 DOCX 格式的文档,没有任何的图纸或源代码,查看文件列表

如果您已付费下载过本站文档,您可以点这里二次下载

分享

预览

小升初-数学-几何-专题.docx

上传人:sunny 2021/7/21 文件大小:1.41 MB

下载得到文件列表

小升初-数学-几何-专题.docx

相关文档

文档介绍

文档介绍:小升初-数学-几何-专题
小升初-几何专题
1、(★★)如图,已知四边形ABCD中,AB=13,BC=3,CD=4,DA=12,并且BD与AD垂直,则四边形的面积等于多少?
[思 路]:显然四边形ABCD的面积将由三角形ABD与三角形BCD的面积求和得到.三角形ABD是直角三角形,底AD已知,高BD是未知的,但可以通过勾股定理求出,进而可以判定三角形BCD的形状,然后求其面积.这样看来,BD的长度是求解本题的关键.
解:由于BD垂直于AD,所以三角形ABD是直角三角形.而AB=13,DA=12,由勾股定理,BD =AB-AD=13—12=25=5,所以BD=5.三角形BCD中BD=5,BC=3,CD=4,又3十4=5,故三角形BCD是以BD为斜边的直角三角形,BC与CD垂直.那么:
=+=12×5÷2+4×3÷2=36..
即四边形ABCD的面积是36.
2、(★★)如图四边形土地的总面积是48平方米,三条线把它分成了4个小三角形,其中2个小三角形的面积分别是7平方米和9平方米.那么最大的一个三角形的面积是________平方米;
7
9
[分析]:剩下两个三角形的面积和是 48-7-9=32 ,是右侧两个三角形面积和的2 倍,故左侧三角形面积是右侧对应三角形面积的2倍,最大三角形面积是 9×2=18。
3.(★★)将下图中的三角形纸片沿虚线折叠得到右图,其中的粗实线图形面积与原三角形面积之比为2:3。已知右图中3个阴影的三角形面积之和为1,那么重叠部分的面积为多少?
[思 路]:小升初中常把分数,百分数,比例问题处理成份数问题,这个思想一定要养成。
解:粗线面积:黄面积=2:3
绿色面积是折叠后的重叠部分,减少的部分就是因为重叠才变少的,这样可以设总共3份,后来粗线变2份,减少的绿色部分为1份,所以阴影部分为2-1=1份,
4、(★★)求下图中阴影部分的面积:
【解】如左下图所示,将左下角的阴影部分分为两部分,然后按照右下图所示,将这两部分分别拼补在阴影位置。可以看出,原题图的阴影部分等于右下图中AB弧所形成的弓形,其面积等于扇形OAB与三角形OAB的面积之差。
所以阴影面积:π×4×4÷4-4×4÷2=。
5、(★★)下图中阴影部分的面积是多少厘米2?
分析与解:本题可以采用一般方法,也就是分别计算两块阴影部分面积,再加起来,但不如整体考虑好。我们可以运用翻折的方法,将左上角一块阴影部分(弓形)翻折到半圆的右上角(以下图中虚线为折痕),把两块阴影部分合在一起,组成一个梯形(如下图所示),这样计算就很容易。
本题也可看做将左上角的弓形绕圆心旋转90°,到达右上角,得到同样的一个梯形。
6、(★★)如图6-1,每一个小方格的面积都是l平方厘米,那么用粗线围成的图形的面积是多少平方厘米?
【分析与解】 方法一:正方形格点阵中多边形面积公式:
(N+-1)×单位正方形面积,其中N为图形内格点数,L为图形周界上格点数.

有N=4,L=7,则用粗线围成图形的面积为:(4+-1)×1=(平方厘米)
方法二:如下图,先求出粗实线外格点内的图形的面积,有①=3÷2=,


有△DFB、△DBC共底DB,等高,所以这两个三角形的面积相等,显然,△DBC的面积(平方厘米).
阴影部分△DFB的面积为50平方厘米.
8、(★★)用棱长是1厘米的正方块拼成如下图所示的立体图形,问该图形的表面积是多少平方厘米?
[方法一]:
[思 路]:整体看待面积问题。
解:不管叠多高,上下两面的表面积总是3×3;再看上下左右四个面,都是2×3+1,
所以,总计9×2+7×4=18+28=46。
[方法二]:
[思 路]:所有正方体表面积减去粘合的表面积
解:从图中我们可以发现,总共有14个正方体,这样我们知道总共的表面积是:6×14=64,但总共粘合了18个面,这样就减少了18×1=18,所以剩下的表面积是64-18=46。
[方法三]:直接数数。
[思 路]:通过图形,我们可以直接数出总共有46个面,每个面面积为1,这样总共的表面积就是46。
9、(★★)一个圆柱形的玻璃杯中盛有水,,玻璃杯内侧的底面积是72cm2,在这个杯中放进棱长6cm的正方体铁块后,水面没有淹没铁块,