文档介绍:*
第三章 异方差和自相关
*
本章要点
异方差的定义、产生原因及后果
异方差的检验方法
异方差的修正方法
自相关的产生原因
忽略自相关的严重后果
自相关的检验
自相关的修正
*
在前面的章节里我们已经完成了对经典正态线性回归模型的讨论。但在实际中,经典线性回归模型的基本假定经常是不能得到满足的,而若在此状况下仍应用OLS进行回归,就会产生一系列的问题,因此我们就需要采取不同的方法对基本假定不满足的情况予以处理。
在本章中,我们将着重考虑假定2和假定3得不到满足,即存在异方差和自相关情况下的处理办法。
*
第一节 异方差的介绍
一、异方差的定义及产生原因
异方差(heteroscedasticy)就是对同方差假设(assumption of homoscedasticity)的违反。经典回归中同方差是指随着样本观察点X的变化,线性模型中随机误差项 的方差并不改变,保持为常数,即
i=1,2,…,n ()
如果的数值对不同的样本观察值各不相同,则称随机误差项具有异方差,即
常数 i=1,2,…n ()
*
图3-1 异方差直观图
*
为什么会产生这种异方差性呢?
一方面是因为随机误差项包括了测量误差和模型中被省略的一些因素对因变量的影响,另一方面来自不同抽样单元的因变量观察值之间可能差别很大。因此,异方差性多出现在横截面样本之中。至于时间序列,则由于因变量观察值来自不同时期的同一样本单元,通常因变量的不同观察值之间的差别不是很大,所以异方差性一般不明显。
*
二、异方差的后果
一旦随机误差项违反同方差假设,即具有异方差性,如果仍然用OLS进行参数估计,将会产生什么样的后果呢?
结论就是,OLS估计量的线性和无偏性都不会受到影响,但不再具备最优性,即在所有线性无偏估计值中我们得出的估计值的方差并非是最小的。
所以,当回归模型中随机项具有异方差性时,OLS法已不再适用。
*
第二节 异方差的检验
由于异方差的存在会导致OLS估计量的最佳性丧失,降低精确度。所以,对所取得的样本数据(尤其是横截面数据)判断是否存在异方差,是我们在进行正确回归分析之前要考虑的事情。异方差的检验主要有图示法和解析法,下面我们将介绍几种常用的检验方法。
*
一、图示法
图示法是检验异方差的一种直观方法,通常有下列两种思路:
(一)因变量y与解释变量x的散点图:若随着x的增加,图中散点分布的区域逐渐变宽或变窄,或出现了偏离带状区域的复杂变化,则随机项可能出现了异方差。
(二)残差图。残差图即残差平方 ( 的估计值)与x的散点图,或者在有多个解释变量时可作残差 与y的散点图或残差 和可能与异方差有关的x的散点图。具体做法:先在同方差的假设下对原模型应用OLS法,求出和残差平方 ,再绘制残差图( , )。
*
二、解析法
检验异方差的解析方法的共同思想是,由于不同的观察值随机误差项具有不同的方差,因此检验异方差的主要问题是判断随机误差项的方差与解释变量之间的相关性,下列这些方法都是围绕这个思路,通过建立不同的模型和验判标准来检验异方差。