文档介绍:事件的相互独立性
【教学重难点】
【教学目标】
【核心素养】
相互独立事件的概念
理解相互独立事件的概念及意义
数学抽象
相互独立事件同时发生的概念
能记住相互独立事件概率的乘法公式;
能综合运用互斥事件的概率加法公式
及独立事件的乘法公式解题
数学运算、数学建模
【教学过程】
一、问题导入
预****教材内容,思考以下问题:
1.事件的相互独立性的定义是什么?
2.相互独立事件有哪些性质?
3.相互独立事件与互斥事件有什么区别?
二、基础知识
1.相互独立的概念
设A,B为两个事件,若P(AB)=P(A)P(B),则称事件A与事件B相互独立.
2.相互独立的性质
若事件A与B相互独立,那么A与,与B,与也都相互独立.
■名师点拨 (1)必然事件Ω,不可能事件∅都与任意事件相互独立.
(2)事件A,B相互独立的充要条件是P(AB)=P(A)·P(B).
三、合作探究
1.相互独立事件的判断
一个家庭中有若干个小孩,假定生男孩和生女孩是等可能的,令A={一个家庭中既有男孩又有女孩},B={一个家庭中最多有一个女孩}.对下述两种情形,讨论A与B的独立性:
(1)家庭中有两个小孩;
(2)家庭中有三个小孩.
【解】(1)有两个小孩的家庭,男孩、女孩的可能情形为Ω={(男,男),(男,女),(女,男),(女,女)},
它有4个基本事件,由等可能性知概率都为.
这时A={(男,女),(女,男)},
B={(男,男),(男,女),(女,男)},
AB={(男,女),(女,男)},
于是P(A)=,P(B)=,P(AB)=.
由此可知P(AB)≠P(A)P(B),
所以事件A,B不相互独立.
(2)有三个小孩的家庭,小孩为男孩、女孩的所有可能情形为Ω={(男,男,男),(男,男,女),(男,女,男),(男,女,女),(女,男,男),(女,男,女),(女,女,男),(女,女,女)}.
由等可能性知这8个基本事件的概率均为,这时A中含有6个基本事件,B中含有4个基本事件,AB中含有3个基本事件.
于是P(A)==,P(B)==,P(AB)=,
显然有P(AB)==P(A)P(B)成立.
从而事件A与B是相互独立的.
判断两个事件是否相互独立的两种方法
(1)根据问题的实质,直观上看一事件的发生是否影响另一事件发生的概率来判断,若没有影响,则两个事件就是相互独立事件;
(2)定义法:通过式子P(AB)=P(A)P(B)来判断两个事件是否独立,若上式成立,则事件A,B相互独立,这是定量判断.
2.相互独立事件同时发生的概率
王敏某天乘火车从重庆到上海去办事,,,,假设这三列火车之间是否正点到达互不影响.求:
(1)这三列火车恰好有两列正点到达的概率;
(2)这三列火车至少有一列正点到达的概率.
【解】 用A,B,C分别表示这三列火车正点到达的事件.
则P(A)=,P(B)=,P(C)=,
所以P()=,P()=,P()=.
(1)由题意得A,B,C之间互相独立,所以恰好有两列正点到达的概率为
P1=P(BC)+P(AC)+P(AB)=
P()P