文档介绍:
: .
九年级数学下册知识点总结---副本
D
正半轴;③,与轴交于负半轴。
以上三点中,当结论和条件互换时,,则 。
10、几种特殊的二次函数的图像特征如下:
函数解析式
开口方向
对称轴
顶点坐标
当时
开口向上
当时
开口向下
(轴)
(0,0)
(轴)
(0, )
(,0)
(,)
()
11、 用待定系数法求二次函数的解析式
(1)一般式:。已知图像上三点或三对、的值,通常选择一般式。
(2)顶点式:.已知图像的顶点或对称轴,通常选择顶点式。
(3)交点式:已知图像与轴的交点坐标、,通常选用交点式:。
12、直线与抛物线的交点
(1)轴与抛物线得交点为(0, )。
(2)与轴平行的直线与抛物线有且只有一个交点(,)。
(3)抛物线与轴的交点。
二次函数的图像与轴的两个交点的横坐标、,是对应一元二次方程的两个实数根。抛物线与轴的交点情况可以由对应的一元二次方程的根的判别式判定:
①有两个交点抛物线与轴相交;
②有一个交点(顶点在轴上)抛物线与轴相切;
③没有交点抛物线与轴相离。
(4)平行于轴的直线与抛物线的交点:
同(3)一样可能有0个交点、1个交点、2个交点。当有2个交点时,两交点的纵坐标相等,设纵坐标为,则横坐标是的两个实数根。
(5)一次函数的图像与二次函数的图像的交点,由方程组 的解的数目来确定:
①方程组有两组不同的解时与有两个交点;
②方程组只有一组解时与只有一个交点;
③方程组无解时与没有交点。
(6)抛物线与轴两交点之间的距离:
若抛物线与轴两交点为,由于、是方程的两个根,故:
第二十七章 相似 (证明)
27.1 图形的相似
概述
如果两个图形形状相同,但大小不一定相等,那么这两个图形相似。(相似的符号:∽)
判定
如果两个多边形满足对应角相等,对应边的比相等,那么这两个多边形相似。
相似比
相似多边形的对应边的比叫相似比。相似比为1时,相似的两个图形全等。
性质
相似多边形的对应角相等,对应边的比相等。相似多边形的周长比等于相似比。
相似多边形的面积比等于相似比的平方。
27.2 相似三角形
判定
,且夹角相等
,所构成的三角形与原三角形相似。
性质
(对应高、对应中线、对应角平分线、外接圆半径、内切圆半径等)的比等于相似比。
。
27.3 位似
如果两个图形不仅是相似图形,而且每组对应点的连线交于一点,对应边互相平行,那么这两个图形叫做位似图形,这个点叫做位似中心,这时的相似比又称为位似比。
性质
位似图形的对应点和位似中心在同一直线上,它们到位似中心的距离之比等于相似比。
位似多边形的对应边平行或共线。
位似可以将一个图形放大或缩小。
位似图形的中心可以在任意的一点,不过位似图形也会随着位似中心的位变而位变。
根据一个位似中心可以作两个关于已知图形一定位似比的位似图形,这两个图形分布在位似中心的两侧,并且关于位似中心对称。
注意
1、位似是一种具有位置关系的相似,所以两个图形是位似图形,必定是相似图形,而相似图形不一定是位似图形;
2、两个位似图形的位似中心只有一个;
3、两个位似图形可能位于位似中心的两侧,也可能位于位似中心的一侧;
4、位似比就是相似比.利用位似图形的定义可判断两个图形是否位似;
5、平行于三角形一边的直线和其它两边相交,所构成的三角形与原三角形位似。
第二十八章 直角三角形边的关系 (选择,填空,计算,证明)
1、正切:定义:在Rt△ABC中,锐角∠A的对边与邻边的比叫做∠A的正切,记作tanA,
即tanA=∠A的对边/∠A的邻边。
①tanA是一个完整的符号,它表示∠A的正切,记号里习惯省去角的符号“∠”;
②tanA没有单位,它表示一个比值,即直角三角形中∠A的对边与邻边的比;
③tanA不表示