文档介绍:DNA甲基化功能
D
化的时间,又进入一个的范围。提出直接作为riggs2和霍利迪和pugh1不可能是基因沉默的主要途径。
被动或主动删除5mC意味着建立后续基因表达能接受的状态。DNA去甲基化酶的研究已经很长时间了,已经充满了许多失败的开始,但现在更广泛接受的是去甲基化酶的存在。最近,大量的文献表明,主动去甲基化是可以实现的,虽然这需要一种机制,最终涉及细胞分化或者DNA修复和碱基的切除而不是甲基群直接从5mc 组成成分中移除。比如(TET)甲基胞嘧啶双加氧酶参与,活化诱导胞嘧啶核苷脱氨酶(AID)和胸腺嘧啶DNA糖基化酶(TDG)活性和被甲基化和在基因中的激活现在已经阐明。事实上, TET3的缺乏导致脱甲基CpG位点在关键基因的失败比如Oct4(也称为Pou5f1)或在父亲基因组上的Nanog和延误胚胎发育。
DNA甲基化的改变是现在已知的遗传事件和包括在人类致癌中。因此,了解DNA甲基化的作用对于理解生病过程是必不可少的。在本文中,我对背景中无关紧要的基因组中的DNA甲基化的功能进行了评估,与特定的重点与转录的关系(已知和未知的重点总结在表2)。然后我介绍了可能的机制,DNA甲基化可能用到,例如,通过改变蛋白结合,我思考了剩下的问题。
在转录起始位点
模式在 CpG岛的转录起始位点。大多数的CGIs维持了体细胞中的非甲基化。当有CGIs的基因在TSS是活跃的,它们的启动子通常有在TSS上的NDRs表示的特征,而这些NDRs通常是两侧的含有组蛋白变体H2A. Z的核小体。是用在赖氨酸 4(H3K4me3)上的组蛋白H3标记的。基因表达的水平被转录因子控制。CGI的启动子被抑制有不同的机理,比如由多梳蛋白调节的启动子。例如,胚胎发育的主要调节基因编码被在ESCs和分化的细胞里的不能表达这些基因的多梳蛋白抑制,如肌源性的分化1(MyoD1)或者修补盒6(Pax6),他们有在TSS上的核小体和被H3K27me3标记,和失活的基因有关系。
然而,一些被抑制的基因使启动子CGIS甲基化。启动子CGISs的甲基化通常限制抑制状态的长期稳定的基因。 例子包括印记基因,位于失活的X染色体基因与专门表达生殖细胞的基因和假设在体细胞中表达不合适的基因。能持续100多年寿命CGIs的DNA甲基化抑制的稳定性对CGIs的生存无影响。因为在体细胞中的这些区域中任何脱氨基事件不会传递种系给后代。我们仍然没有完全弄明白为什么少数CpG岛甲基化,而不是大多数。
在非CpG岛的TSS的模式。和他们的TSSs上的有CGIs基因相比,在TSS上CpG很弱的基因是大幅波动发生在启动子甲基化水平的基因。非CGI TSS的基因在原始生殖细胞基因中表达的是在TSS上的非甲基化,因此在ESCs上专门表达的基因或者在精子细胞的组织特异性基因经常显示甲基化而不是在卵母细胞或者体细胞中表达。众所周知的例子是Oct4和Nanog基因编码的转录因子,维持干细胞状态是必不可少的。最近的研究表明,Oct4 和NANOG启动子可能被AID和/或者TET3活化甲基化。然而,一些组织特异性的基因在精子和ESCs中显示甲基化,仅仅显示在被表达的基因中特异性组织的脱甲基化。
一个全基因组研究假定在非CGIs和表达之间的甲基化没有相反的关系存在,但是数据的再分析表明表达和甲基化之间的这种关系事实上显然是全基因组。由于长期关注CGIs,我们仍然不知道在控制非CGI TSS甲基化作用的细节。
甲基化转录起始沉默吗?
在上面描述的一些抑制的TSS甲基化观察, DNA甲基化和转录起始之间的功能关系是什么?有确凿的证据,在TSSs的CGIs甲基化在DNA装配进核小体后不能启动转录。然而,是沉默还是甲基化的问题在这个领域首先就进行了长时间的讨论。洛克等人的早期实验。清楚地表明, 失活的X染色体上的Hprt基因的甲基化发生在染色体灭活之后。换句话说,甲基化似乎是“锁定”加强先前沉默状态的X连锁基因。虽然在常染色体基因上的大多数的 CGIs在体细胞上保持非甲基化,少数(<10%)在正常组织和细胞中甲基化,但关于沉默的重新甲基化方面的期限没有深入的研究。如上所述,最近发现DNMT3的作用对造血干细胞分化的提高怀疑长期“锁定”模型普遍性。由于作者的研究结果表明,甲基化酶对相当短命的细胞类型分化非常重要,看来可能是DNA甲基化在启动时有一个更有指导意义而不是加强沉默。
然而,在癌细胞的基因组范围研究,表明被多梳蛋白复合物沉默的CGI的启动子基因比在癌症中的其他基因更可能甲基化:即甲基化之前的沉默状态。因此,似乎沉默之前的甲基化是一般机制,但数据尚未成熟到肯定的程度。除了改变自己在CpG岛,组织特异性的改变发生在它们周围的边上。然而