1 / 65
文档名称:

第七章 量子力学的矩阵形式与表象变换.ppt

格式:ppt   页数:65
下载后只包含 1 个 PPT 格式的文档,没有任何的图纸或源代码,查看文件列表

如果您已付费下载过本站文档,您可以点这里二次下载

分享

预览

第七章 量子力学的矩阵形式与表象变换.ppt

上传人:中国课件站 2011/12/12 文件大小:0 KB

下载得到文件列表

第七章 量子力学的矩阵形式与表象变换.ppt

文档介绍

文档介绍:第七章量子力学的矩阵形式与表象变换
§1 态的表象
§2 算符的矩阵表示
§3 量子力学公式的矩阵表述
§4 Dirac 符号
§5 Hellmann – Feynman 定理及应用
§6 占有数表象
§7 么正变换矩阵
§1
§2
§3
§4
§5
§6
§7
返回
(一)动量表象
(二)力学量表象
(三)讨论
§1 态的表象
返回
到目前为止,体系的状态都用坐标(x,y,z)的函数表示,也就是说描写状态的波函数是坐标的函数。力学量则用作用于坐标函数的算符表示。但是这种描述方式在量子力学中并不是唯一的,这正如几何学中选用坐标系不是唯一的一样。坐标系有直角坐标系、球坐标系、柱坐标系等,但它们对空间的描写是完全是等价的。
波函数也可以选用其它变量的函数, 力学量则相应的表示为作用于这种函数上的算符。
表象:量子力学中态和力学量的具体表示方式称为表象。以前采用的是坐标表象,下面我们要介绍其他表象。
在坐标表象中,体系的状态用波函数Ψ(x,t)描写,这样一个态如何用动量为变量的波函数描写在前面几章中已经有所介绍。
动量本征函数:
组成完备系,任一状态Ψ可按其展开
展开系数
假设Ψ(x,t) 是归一化波函数,则 C(p,t) 也是归一。
命题

(一)动量表象
|C(p,t)| 2 d p
是在Ψ(x,t)所描写的状态中,测量粒子的动量所得结果在
p → p + d p 范围内的几率。
|Ψ(x,t)| 2d x
是在Ψ(x,t)所描写的状态中,测量粒子的位置所得结果在
x → x + d x 范围内的几率。
Ψ(x,t) 与 C(p,t) 一一对应,描述同一状态。
Ψ(x,t) 是该状态在坐标表象中的波函数;

C(p,t) 就是该状态在动量表象中的波函数。
C(p,t) 物理意义
若Ψ(x,t) 描写的态是具有确定动量 p’的自由粒子态,即:
则相应动量表象中的波函数:
所以,在动量表象中,
具有确定动量p’的粒
子的波函数是以动量
p为变量的δ- 函数。
换言之,动量本征函
数在自身表象中是一
个δ函数。
x 在自身表象即坐标表象中对应
有确定值 x’本征函数是δ(x'-x)。
同样
这可由本征
值方程看出:
那末,在任一力学量Q表象中,
Ψ(x,t) 所描写的态又如何表示呢?
推广上述讨论:
x, p都是力学量,分别对应有坐标表象和动量表象,
因此可以对任何力学量Q都建立一种表象,称为力学量 Q 表象。
问题
(1)具有分立本征值的情况
(2)含有连续本征值情况
(二)力学量表象
(1)具有分立本征值的情况
设算符Q的本征值为: Q1, Q2, ..., Qn, ...,
相应本征函数为:u1(x), u2(x), ..., un(x), ...。
将Ψ(x,t) 按 Q 的
本征函数展开:
若Ψ, un都是归一化的,
则 an(t) 也是归一化的。
证:
由此可知,| an| 2 表示
在Ψ(x,t)所描述的状态
中测量Q得Qn的几率。
a1(t), a2(t), ..., an(t), ...
就是Ψ(x,t)所描写状态在Q表象中的表示。
写成
矩阵形式
共轭矩阵
归一化可写为
(2)含有连续本征值情况
例如氢原子能量就是这样一种力学量,
即有分立也有连续本征值。
设力学量 Q 的本征值和本征函数分别为:
Q1, Q2, ..., Qn, ..., q
u1(x), u2(x), ..., un(x), ..., uq(x)

归一化则变为:
|an(t)|2 是在Ψ(x,t)
态中测量力学量
Q 所得结果为 Qn
的几率;
|aq(t)|2dq 是在Ψ(x,t) 态中
测量力学量 Q 所得结果在
q → q + d q之间的几率。
在这样的表象中,Ψ仍可以用一个列矩阵表示:
归一化仍可表为:Ψ+Ψ= 1
这类似于一个矢量可以在不同坐标系描写一样。矢量 A在直角坐标系由三分量Ax Ay Az 描述;在球坐标系用三分量Ar A A描述。 Ax Ay Az 和 Ar, A, A形式不同,但描写同一矢量A。
态矢量
基本矢量
同一状态可以在不同表象用波函数描写,表象不同,
波函数的形式也不同,但是它们描写同一状态。
(三)讨论

最近更新

2025年贵州电子信息职业技术学院单招职业适应.. 40页

2025年贵州电子科技职业学院单招职业技能考试.. 39页

2025年贵州省六盘水市单招职业适应性考试模拟.. 40页

2025年贵州省铜仁地区单招职业适应性测试模拟.. 40页

2025年贵州经贸职业技术学院单招职业倾向性测.. 40页

2025年贵州航天职业技术学院单招职业倾向性测.. 39页

2026年新能源单招试题必考题 43页

2025年贵州财经职业学院单招职业适应性测试模.. 40页

2025年贵州食品工程职业学院单招职业技能测试.. 41页

2025年贵阳康养职业大学单招职业倾向性考试模.. 41页

2025年资阳口腔职业学院单招职业倾向性测试题.. 38页

2025年赣南卫生健康职业学院单招职业倾向性测.. 40页

2025年赤峰工业职业技术学院单招职业适应性测.. 41页

2026年武汉信息传播职业技术学院单招职业适应.. 42页

2025年辽宁民族师范高等专科学校单招综合素质.. 41页

2026年汉中职业技术学院单招职业适应性考试题.. 41页

2025年辽宁省本溪市单招职业倾向性考试模拟测.. 40页

2026年江苏城市职业学院江都办学点单招职业倾.. 42页

2025年辽宁经济职业技术学院单招职业适应性测.. 40页

2026年江苏省徐州市单招职业倾向性考试模拟测.. 41页

2026年江西传媒职业学院单招职业适应性测试模.. 43页

2025年运城师范高等专科学校单招职业倾向性测.. 41页

2026年江西司法警官职业学院单招职业技能测试.. 42页

2025年通化医药健康职业学院单招职业倾向性测.. 40页

2025年遂宁能源职业学院单招综合素质考试题库.. 41页

2026年江西建设职业技术学院单招职业倾向性测.. 42页

2025年邢台医学高等专科学校单招职业倾向性考.. 39页

2026年江西泰豪动漫职业学院单招职业技能测试.. 41页

2025年邯郸科技职业学院单招职业倾向性测试模.. 40页

2026年江西省上饶市单招职业适应性测试题库及.. 42页