1 / 13
文档名称:

Abstract Algebra-The Basic Graduate Year (3).pdf

格式:pdf   页数:13
下载后只包含 1 个 PDF 格式的文档,没有任何的图纸或源代码,查看文件列表

如果您已付费下载过本站文档,您可以点这里二次下载

Abstract Algebra-The Basic Graduate Year (3).pdf

上传人:一文千金 2011/12/26 文件大小:0 KB

下载得到文件列表

Abstract Algebra-The Basic Graduate Year (3).pdf

文档介绍

文档介绍:page 1 of Chapter 3
CHAPTER 3 FIELD FUNDAMENTALS
Field Extensions
If F is a field and F [X] is the set of all polynomials over F, that is, polynomials with
coefficients in F , we know that F [X] is a Euclidean domain, and therefore a principal ideal
domain and a unique factorization domain (see Sections and ). Thus any nonzero
polynomial f in F [X] can be factored uniquely as a product of irreducible polynomials.
Any root of f must be a root of one of the irreducible factors, but at this point we have
no concrete information about the existence of roots and how they might be found. For
example, X2 + 1 has no real roots, but if we consider the larger field plex numbers,
we get two roots, +i and −i. It appears that the process of passing to a larger field may
help produce roots, and this turns out to be correct.
Definitions If F and E are fields and F ⊆ E, we say that E is an extension of F ,
and we write F ≤ E, or sometimes E/F.
If E is an extension of F , then in particular E is an abelian group under addition, and
we may multiply the “vector” x ∈ E by the “scalar”λ∈ F , and the axioms of a vector
space are satisfied. Thus if F ≤ E, then E is a vector space over F . The dimension of this
vector space is called the degree of the extension, written [E : F ]. If [E : F ]=n<∞,we
say that E is a finite extension of F , or that the extension E/F is finite, or that E is of
degree n over F .
If f is a nonconstant polynomial over the field F , and f has no roots in F , we can
always produce a root of f in an extension field of F . We do this after a preliminary result.
Lemma Let f : F → E be a homomorphism of fields, ., f(a + b)=f(a)+
f(b),f(ab)=f(a)f(b) (all a, b ∈ F ), and f(1F )=1E. Then f is a monomorphism.
Proof. First note that a field F has no ideals except {0} and F . For if a is a nonzero member
of the ideal I, then ab = 1 for some b ∈ F , hence 1 ∈ I, and therefore I = F . Taking I to
be the kernel of f, we see that I cannot

最近更新

儿童术后康复护理指导 44页

煤矿安全整治专项行动推进 60页

2026年八年级地理高分学习方法 10页

2023年万博科技职业学院单招综合素质考试题库.. 41页

2023年三峡电力职业学院单招职业技能测试模拟.. 39页

2023年上海健康医学院单招职业倾向性考试模拟.. 41页

2023年上海对外经贸大学单招职业适应性考试模.. 41页

2023年上海理工大学单招职业技能考试模拟测试.. 41页

2023年上海财经大学浙江学院单招职业倾向性考.. 39页

2023年丽水学院单招职业适应性测试题库及答案.. 39页

2023年云南旅游职业学院单招职业倾向性考试模.. 40页

2026年全国中小学生安全教育日教案 18页

2023年仰恩大学单招职业适应性测试题库完美版.. 41页

2026年入党积极分子学习培训收获 14页

2023年六盘水幼儿师范高等专科学校单招职业技.. 41页

2023年兰州科技职业学院单招职业适应性测试题.. 39页

2023年内蒙古交通职业技术学院单招职业倾向性.. 40页

2023年内蒙古北方职业技术学院单招职业适应性.. 39页

2023年内蒙古民族幼儿师范高等专科学校单招职.. 39页

2026年兔年女孩名字有寓意好听 3页

2023年南京工业职业技术大学单招职业技能考试.. 41页

2023年南开大学滨海学院单招职业适应性考试模.. 40页

2023年南阳科技职业学院单招职业倾向性考试模.. 42页

2023年厦门演艺职业学院单招职业技能考试题库.. 39页

2023年四川省凉山州数学中考真题试卷【含答案.. 32页

铁路钢轨探伤车运用管理办法 21页

青岛市电梯安全运行服务规范 20页

急性特发性生理盲点扩大综合征一例 8页

川机管函〔2016〕313号 2页

公安部历任部长 9页