1 / 20
文档名称:

Abstract Algebra-The Basic Graduate Year (4).pdf

格式:pdf   页数:20
下载后只包含 1 个 PDF 格式的文档,没有任何的图纸或源代码,查看文件列表

如果您已付费下载过本站文档,您可以点这里二次下载

Abstract Algebra-The Basic Graduate Year (4).pdf

上传人:一文千金 2011/12/26 文件大小:0 KB

下载得到文件列表

Abstract Algebra-The Basic Graduate Year (4).pdf

文档介绍

文档介绍:page 1 of Chapter 4
CHAPTER 4 MODULE FUNDAMENTALS
Modules and Algebras
Definitions ments
A vector space M over a field R is a set of objects called vectors, which can be added,
subtracted and multiplied by scalars (members of the underlying field). Thus M is an
abelian group under addition, and for each r ∈ R and x ∈ M we have an element rx ∈ M.
Scalar multiplication is distributive and associative, and the multiplicative identity of the
field acts as an identity on vectors. Formally,
r(x + y)=rx + ry;(r + s)x = rx + sx; r(sx)=(rs)x;1x = x
for all x, y ∈ M and r, s ∈ R. A module is just a vector space over a ring. The formal
definition is exactly as above, but we relax the requirement that R be a field, and instead
allow an arbitrary ring. We have written the product rx with the scalar r on the left, and
technically we get a left R-module over the ring R. The axioms of a right R-module are
(x + y)r = xr + yr; x(r + s)=xr + xs;(xs)r = x(sr),x1=x.
“Module” will always mean left module unless stated otherwise. Most of the time, there is
no reason to switch the scalars from one side to the other (especially if the underlying ring
mutative). But there are cases where we must be very careful to distinguish between
left and right modules (see Example 6 of ()).
Some Basic Properties of Modules
Let M be an R-module. The technique given for rings in () can be applied to
establish the following results, which hold for any x ∈ M and r ∈ R. We distinguish the
zero vector 0M from the zero scalar 0R.
(1) r0M =0M [r0M = r(0M +0M )=r0M + r0M ]
(2) 0Rx =0M [0Rx =(0R +0R)x =0Rx +0Rx]
(3) (−r)x = r(−x)=−(rx) [as in (2) of () with a replaced by r and b by x]
(4) If R is a field, or more generally a division ring, then rx =0M implies that either r =0R
−1
or x =0M . [If r = 0, multiply the equation rx =0M by r .]
Examples
1. If M is a vector space over the field R, then M is an R-module.
2. Any ring R is a module over itsel

最近更新

2026年停电应急处理预案 27页

2023年安阳学院单招职业倾向性考试模拟测试卷.. 40页

2023年安阳职业技术学院单招职业技能测试题库.. 39页

2023年宜昌科技职业学院单招职业技能考试题库.. 38页

2023年宜春幼儿师范高等专科学校单招职业技能.. 40页

2026年做最好的自己作文素材 17页

2026年做最好的老师读书笔记心得通用 15页

2026年做方案拉赞助 77页

2023年宿州学院单招综合素质考试题库带答案 41页

2023年宿州职业技术学院单招综合素质考试题库.. 40页

2026年做家务劳动的心得感受作文 8页

2023年山东信息职业技术学院单招职业技能考试.. 41页

2023年山东劳动职业技术学院单招职业技能考试.. 39页

2023年山东化工职业学院单招职业技能考试模拟.. 40页

2023年山东圣翰财贸职业学院单招职业适应性考.. 40页

2023年山东外事职业大学单招职业倾向性测试题.. 41页

2026年做人做事励志名言 激励做人做事的名言 6页

2023年山东旅游职业学院单招职业技能测试模拟.. 41页

2023年山东服装职业学院单招职业技能测试模拟.. 42页

2023年山东电子职业技术学院单招职业适应性考.. 40页

2025年广州卫生职业技术学院单招职业技能测试.. 64页

美团代运营业务委托合同 6页

新概念青少版2A各单元重点归纳 15页

九年级家长会课件PPT下载(初三2班) 25页

年产3000万片硝苯地平缓释片车间设计 40页

DB61∕T 926-2014 火灾高危单位消防安全管理与.. 45页

AQ 7011-2018《高温熔融金属吊运安全规程》 11页

保洁外包单位月度考评表 3页

基于 ABAQUS 的切削残余应力仿真说明书 43页

气动球阀使用说明书 2页