1 / 13
文档名称:

Difference Equations to Differential Equations (17).pdf

格式:pdf   页数:13
下载后只包含 1 个 PDF 格式的文档,没有任何的图纸或源代码,查看文件列表

如果您已付费下载过本站文档,您可以点这里二次下载

Difference Equations to Differential Equations (17).pdf

上传人:一文千金 2011/12/26 文件大小:0 KB

下载得到文件列表

Difference Equations to Differential Equations (17).pdf

文档介绍

文档介绍:Section
 ¢¡£¡¥¤§¦¨¤§©
¤
  £© 
 Rolle’s Theorem and the
 ¢¡£¡¥¤§¦¨¤§©  £
 £© Mean Value Theorem
The two theorems which are at the heart of this section draw connections between the
instantaneous rate of change and the average rate of change of a function. The Mean
Value Theorem, of which Rolle’s Theorem is a special case, says that if f is differentiable
on an interval, then there is some point in that interval at which the instantaneous rate
of change of the function is equal to the average rate of change of the function over the
entire interval. For example, if f gives the position of an object moving in a straight line,
the Mean Value Theorem says that if the average velocity over some interval of time is 60
miles per hour, then at some time during that interval the object was moving at exactly
60 miles per hour. This is not a surprising fact, but it does turn out to be the key to
understanding many useful applications.
Before we turn to a consideration of Rolle’s theorem, we need to establish another
fundamental result. Suppose an object is thrown vertically into the air so that its position
at time t is given by f(t) and its velocity by v(t) = f 0(t). Moreover, suppose it reaches its
maximum height at time t0. On its way up, the object is moving in the positive direction,
and so v(t) > 0 for t < t0; on the way down, the object is moving in the negative direction,
and so v(t) < 0 for t > t0. It follows, by the Intermediate Value Theorem and the fact that
v is a continuous function, that we must have v(t0) = 0. That is, at time t0, when f(t)
0
reaches its maximum value, we have f (t0) = 0. This is an extremely useful fact which
holds in general for differentiable functions, not only at maximum values but at minimum
values as well. Before providing a general demonstration, we first need a few definitions.
Definition A function f is said to have a local maximum at a point c if there exists

最近更新

2026年恩施职业技术学院单招职业技能考试模拟.. 42页

2025年贵州农业职业学院单招职业适应性测试题.. 39页

2025年贵州工业职业技术学院单招综合素质考试.. 42页

2025年贵州工程职业学院单招职业技能测试模拟.. 42页

2025年贵州工贸职业学院单招职业适应性测试模.. 42页

2025年贵州建设职业技术学院单招综合素质考试.. 39页

2025年贵州文化旅游职业学院单招职业倾向性考.. 41页

2026年抚州职业技术学院单招职业适应性考试模.. 43页

2026年护理单招技能测试题附答案 41页

2025年贵州水利水电职业技术学院单招职业适应.. 40页

2025年贵州省安顺地区单招职业适应性测试模拟.. 42页

2025年贵州经贸职业技术学院单招职业技能考试.. 40页

2025年贵州装备制造职业学院单招综合素质考试.. 41页

2025年贵州轻工职业技术学院单招职业倾向性考.. 40页

2025年贵州食品工程职业学院单招职业技能考试.. 40页

2025年贵阳幼儿师范高等专科学校单招职业适应.. 41页

2025年贵阳职业技术学院单招职业倾向性测试模.. 40页

2025年资阳口腔职业学院单招职业倾向性测试题.. 40页

2026年曹妃甸职业技术学院单招综合素质考试模.. 41页

2025年赤峰工业职业技术学院单招综合素质考试.. 39页

2025年赤峰应用技术职业学院单招职业倾向性测.. 40页

2026年枣庄职业学院单招职业技能测试模拟测试.. 43页

2025年辽宁冶金职业技术学院单招职业适应性考.. 39页

2025年辽宁地质工程职业学院单招职业倾向性测.. 39页

2025年辽宁城市建设职业技术学院单招职业技能.. 40页

2026年榆林职业技术学院单招职业倾向性考试题.. 42页

2025年辽宁师范高等专科学校单招职业适应性考.. 40页

2026年武汉信息传播职业技术学院单招职业技能.. 42页

2025年广州卫生职业技术学院单招职业技能测试.. 64页

美团代运营业务委托合同 6页