1 / 15
文档名称:

Difference Equations to Differential Equations (18).pdf

格式:pdf   页数:15
下载后只包含 1 个 PDF 格式的文档,没有任何的图纸或源代码,查看文件列表

如果您已付费下载过本站文档,您可以点这里二次下载

Difference Equations to Differential Equations (18).pdf

上传人:一文千金 2011/12/26 文件大小:0 KB

下载得到文件列表

Difference Equations to Differential Equations (18).pdf

文档介绍

文档介绍:Section
 ¢¡£¡¥¤§¦¨¤§©
¤
  £© 
 Finding Maximum and
 ¢¡£¡¥¤§¦¨¤§©  £
 £© Minimum Values
Problems involving finding the maximum or minimum value of a quantity occur frequently
in mathematics and in the applications of mathematics. pany may want to maximize
its profit or minimize its costs; a farmer may want to maximize the yield from his crop
or minimize the amount of irrigation equipment needed to water his fields; an airline may
want to maximize its fuel efficiency or minimize the length of its routes. Methods for
solving some optimization problems are putationally intense that they challenge,
and sometimes even go beyond, the puters currently available. An example of
such a problem is the famous traveling salesman problem, in which a salesman wishes to
visit a certain set of cities using the shortest possible route. In this section we will not
consider problems of this type, but rather we will confine ourselves to problems involving
continuous functions of a single independent variable.
Closed intervals
We will start with the simplest case. Suppose f is a continuous function on a closed interval
[a, b]. From the Extreme Value Theorem we know that f attains both a maximum value
and a minimum value on the interval. We now look for candidates at which these values
might occur. To start, an extreme value could occur at one of the endpoints. For example,
the maximum value of f(x) = x2 on [0, 1] occurs at x = 1. If an extreme value occurs in
the open interval (a, b) at a point c where f is differentiable, then f has a local extremum
at c and so, from our work in Section , we know that f 0(c) = 0. For example, the
minimum value of f(x) = x2 on [−1, 1] occurs at x = 0 and f 0(0) = 0. Finally, the only
other candidates for the locations of extreme values would be points where f 0 is undefined.
For example, the minimum value of f(x) = |x| on [−1, 1] occurs at x = 0, where f 0 is not
defined. Hence we are led to t

最近更新

2025年江西工业职业技术学院单招职业技能考试.. 40页

2025年江西省宜春市单招职业倾向性测试模拟测.. 41页

2025年江西青年职业学院单招职业倾向性测试题.. 40页

2025年沧州职业技术学院单招职业倾向性考试模.. 39页

2025年河北工业职业技术大学单招职业倾向性测.. 40页

2025年河北省衡水市单招职业倾向性测试模拟测.. 40页

2025年河北青年管理干部学院单招职业技能考试.. 41页

2025年河南水利与环境职业学院单招职业倾向性.. 40页

2025年河南省漯河市单招职业适应性考试模拟测.. 40页

2026年云南文化艺术职业学院单招职业倾向性测.. 42页

2025年泉州纺织服装职业学院单招职业倾向性考.. 41页

2026年六安职业技术学院单招职业倾向性考试模.. 40页

2026年内江卫生与健康职业学院单招职业适应性.. 41页

2026年北海职业学院单招职业倾向性测试题库必.. 42页

2025年浙江海洋大学单招综合素质考试题库完美.. 38页

2026年单招考试素质测试题必考题 41页

2025年海南工商职业学院单招职业倾向性测试题.. 40页

2025年淮南师范学院单招职业技能考试模拟测试.. 39页

2025年温州医科大学仁济学院单招综合素质考试.. 39页

2025年渭南职业技术学院单招职业适应性测试题.. 40页

2025年湖北省宜昌市单招职业适应性考试模拟测.. 40页

2026年哈尔滨幼儿师范高等专科学校单招职业适.. 42页

2026年四川化工职业技术学院单招职业倾向性考.. 42页

2026年四川现代职业学院单招职业技能考试模拟.. 43页

2026年塔里木职业技术学院单招职业适应性测试.. 42页

2025年湖南食品药品职业学院单招职业倾向性测.. 42页

2025年湘潭医卫职业技术学院单招职业倾向性考.. 41页

2025年漯河职业技术学院单招综合素质考试题库.. 42页

2025年潇湘职业学院单招综合素质考试题库附答.. 40页

2026年安徽卫生健康职业学院单招职业倾向性考.. 43页